Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Liftings of functions with values in a completely regular space


Authors: G. A. Edgar and Michel Talagrand
Journal: Proc. Amer. Math. Soc. 78 (1980), 345-349
MSC: Primary 46G15; Secondary 28A51
DOI: https://doi.org/10.1090/S0002-9939-1980-0553373-0
MathSciNet review: 553373
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let T be a completely regular space, let $ (\Omega ,\mathcal{F},\mu )$ be complete probability space, and let $ \rho :{\mathcal{L}^\infty }(\mu ) \to {\mathcal{L}^\infty }(\mu )$ be a lifting. If $ f:\Omega \to T$ is a Baire measurable function, must there exist a function $ \tilde f$ with almost all of its values in T, such that $ \rho (h \circ f) = h \circ \tilde f$ for all bounded continuous functions h on T? If T is strongly measure-compact, then the answer is ``yes". If T is not measure-compact, then the answer is ``no". This shows that a lifting is not always the best method for the construction of weak densities for vector measures.


References [Enhancements On Off] (What's this?)

  • [1] G. A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26 (1977), 663-677. MR 0487448 (58:7081)
  • [2] A. Goldman, Mesures cylindriques, mesures vectorielles et questions de concentration cylindrique, Pacific J. Math. 69 (1977), 385-413. MR 0473135 (57:12813)
  • [3] A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of liftings, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 48, Springer-Verlag, Berlin and New York, 1969. MR 0276438 (43:2185)
  • [4] J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. 17 (1967), 139-156. MR 0204602 (34:4441)
  • [5] W. Moran, Measures and mappings on topological spaces, Proc. London Math. Soc. 19 (1969), 493-508.
  • [6] K. Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 64 (1979), 151-173. MR 537118 (80h:46065)
  • [7] J. C. Oxtoby, Measure and category, Graduate Texts in Mathematics, vol. 2, Springer-Verlag, Berlin and New York, 1971. MR 0393403 (52:14213)
  • [8] C. Sunyach, Une caractèrisation des espaces universellement Radon-measurables, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), 864-866. MR 0248321 (40:1573)
  • [9] V. S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. (2) 48 (1965), 161-228.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G15, 28A51

Retrieve articles in all journals with MSC: 46G15, 28A51


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0553373-0
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society