Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A simplicity theorem for amoebas over random reals

Author: Fred G. Abramson
Journal: Proc. Amer. Math. Soc. 78 (1980), 409-413
MSC: Primary 03E40; Secondary 28A20
MathSciNet review: 553385
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let M be a countable standard transitive model of ZFC, $ \mathcal{A}$ be an amoeba over M, and r be a random real over M.

Theorem. (a) There is no infinite set of reals X contained in the complement of $ \mathcal{A}$ with $ X \in M[r];(b)\;If\;\{ {x_n}\vert n < \omega \} \in M[r]$ is a sequence of distinct reals, then for all large enough n, $ \{ {x_i}\vert{2^n} \leqslant i < {2^{n + 1}}\} \cap \mathcal{A} \ne \emptyset $.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E40, 28A20

Retrieve articles in all journals with MSC: 03E40, 28A20

Additional Information

PII: S 0002-9939(1980)0553385-7
Keywords: Amoeba forcing, Solovay forcing, random reals
Article copyright: © Copyright 1980 American Mathematical Society