A HUREWICZ-TYPE THEOREM FOR APPROXIMATE FIBRATIONS

D. S. CORAM AND P. F. DUVALL, JR. 1

Abstract. This paper concerns conditions on point inverses which insure that a mapping between locally compact, separable, metric ANR's is an approximate fibration. Roughly a mapping is said to be \(\pi_i \)-movable [respectively, \(H_k \)-movable] provided that nearby fibers include isomorphically into mutual neighborhoods on \(\pi_i \) [resp. \(H_k \)]. An earlier result along this line is that \(\pi_i \)-movability for all \(i \) implies that a mapping is an approximate fibration. The main result here is that for a \(UV^1 \) mapping, \(\pi_i \)-movability for \(i < k - 1 \) plus \(H_k \) and \(H_{k+1} \)-movability imply \(\pi_k \)-movability of the mapping. Hence a \(UV^1 \) mapping which is \(H_k \)-movable for all \(i \) is an approximate fibration. Also, if a \(UV^1 \) mapping is \(\pi_i \)-movable for \(i < k \) and \(k \) is at least as large as the fundamental dimension of any point inverse, then it is an approximate fibration. Finally, a \(UV^1 \) mapping \(f: M^m \to N^n \) between manifolds is an approximate fibration provided that \(f \) is \(\pi_i \)-movable for all \(i < \max\{m - n, \frac{1}{2}(m - 1)\} \).

1. Introduction and statement of results. Given a proper surjective mapping \(p: E \to B \) between locally compact, separable ANR’s, we are interested in conditions on the point inverses which insure that \(p \) is an approximate fibration (definition below). Earlier results in this direction involve “UV” conditions on point inverses. The mapping \(p: E \to B \) is said to be a \(k-uv \) [resp., \(k-UV \)] mapping provided that \(p \) is proper and surjective and for every \(b \) in \(B \) and every neighborhood \(U \) of \(p^{-1}(b) \), there is a neighborhood \(V \) of \(p^{-1}(b) \) in \(U \) such that the inclusion induced map \(H_k(V) \to H_k(U) \) [resp. \(\pi_k(V, e) \to \pi_k(U, e) \)] is zero [for each base point \(e \) in \(V \)]. The notation \(uv^k \) [resp., \(UV^k \)] means \(i-uv \) [resp., \(i-UV \)] for all \(i < k \). In the next section we define properties called \(\pi_k \)-movable and \(H_k \)-movable which generalize the “UV” properties by allowing nonzero images. One of the fundamental theorems on UV properties is the following Hurewicz-type theorem [L2, Theorem 4.2]. If \(p: E \to B \) is a \(UV^{k-1} \) mapping and a \(k-uv \) mapping where \(k > 2 \), then \(p \) is a \(UV^k \) mapping. The purpose of this note is to prove an analogous theorem for movable mappings.

Theorem A. Let \(p: E \to B \) be a mapping between locally compact separable ANR’s. If \(p \) is \(UV^1 \), \(\pi_i \)-movable for \(i < k - 1 \), and \(H_k \) and \(H_{k+1} \)-movable where \(k > 2 \), then \(p \) is \(\pi_k \)-movable.

Received by the editors December 12, 1978 and, in revised form, March 20, 1979.

AMS (MOS) subject classifications (1970). Primary 54C10; Secondary 54C55, 55C15, 55F65, 57A15.

Key words and phrases. Approximate fibration, UV property.

1Research of both authors supported by N.S.F. contract.
As an application, we give the following improvement of [CD2, Theorem 3.7] for UV^1-mappings, and a result on mappings between manifolds which generalizes [L, Theorem 5.4].

Theorem B. If $p: E \to B$ is a UV^1, π_{τ}-movable map for $i < k$ and each fiber of p has fundamental dimension $< k$, then f is an approximate fibration.

Theorem C. Let $f: M^m \to N^n$ be a UV^1 mapping between manifolds. If f is π_{τ}-movable for all $i < k - 1$ where $k > \max\{m - n + 1, (m + 1)/2\}$, then f is an approximate fibration.

We use the following terminology and notation in this paper. If $p: E \to B$ is a mapping, $b \in B$ or $U \subset B$, then the fiber $p^{-1}(b)$ is denoted by F_b and $p^{-1}(U)$ is denoted by \tilde{U}. Our usual homology and cohomology groups are singular, with integral coefficient groups. If λ is one of the usual homology, (cohomology) or homotopy functors, then $\tilde{\lambda}(X)$ denotes the inverse (direct) limit of $\lambda(U)$ as U ranges over the neighborhoods of X. An absolute neighborhood retract for metric spaces is abbreviated to ANR. A manifold is assumed to be connected and boundaryless.

2. **Movability and lifting properties.** Suppose that $p: E \to B$ is a proper surjective map. We say that p has the approximate homotopy lifting property (AHLP) for a space X if for each commutative diagram

$$
\begin{array}{ccc}
X \times \{0\} & \xrightarrow{g} & E \\
\cap & \downarrow{p} & \\
f \quad & \quad & B
\end{array}
$$

and open cover α of B, there is an extension $G: X \times I \to E$ of g such that $p \circ G$ is α-close to f. We say that such a G is an α-lift of f. If p has the AHLP for all spaces X, p is an approximate fibration.

In [CD2], it was shown that the AHLP for polyhedra can be detected by a homotopy regularity condition on fibers, which we called k-movability. In this paper, it will be convenient to define movability in a slightly more general setting.

Let Λ_0 be the collection of functors $\{\pi_i, H_j| i, j = 0, 1, 2, \ldots \}$. If $\Lambda \subset \Lambda_0$, we say that p is Λ-movable provided that given $b \in B$ and any neighborhood U_0 of F_b, there exist open sets U and V with $F_b \subset V \subset U \subset U_0$ such that for each $F_c \subset V$, each $\lambda \in \Lambda$ (and each base point in F_c if relevant), the inclusion induced map $\tilde{\lambda}(F_c)$ isomorphically onto the image of $\lambda(V)$ in $\lambda(U)$. Given such U, V, we say that $\tilde{\lambda}(F_c)$ is realized as the image of $\lambda(V)$ in $\lambda(U)$.

Thus our earlier terminology, k-movable, is replaced in this paper by Λ-movable where $\Lambda = \{\pi_i| i < k \}$. Subject to this change the result from [CD2, Theorem 3.3] says that if E and B are ANR’s and f is Λ-movable for $\Lambda = \{\pi_i| i < k \}$, then f has the AHLP for polyhedra of dimension $< k$.

We will need the following technical lemma.
Lemma 2.1. Let \(\Lambda_1 \) and \(\Lambda_2 \) be subsets of \(\Lambda_0 \). If \(p : E \to B \) is \(\Lambda_1 \)-movable and \(\Lambda_2 \)-movable, then \(p \) is \((\Lambda_1 \cup \Lambda_2) \)-movable. Furthermore, if \(B \) is a manifold, the open sets \(U \) and \(V \) may be chosen to be preimages of contractible sets.

Proof. Given \(b \in B \) and \(U_0 \supseteq F_b \), choose open sets \(U_1, V_1, U_2, V_2, U_3, V_3 \) with \(F_b \subseteq V_3 \subseteq U_3 \subseteq V_2 \subseteq U_2 \subseteq V_1 \subseteq U_1 \subseteq U_0 \) such that for every \(F_c \subseteq V_3 \), \(\lambda \in \Lambda_1 \), \(\tilde{\lambda}(F_c) \) is realized as the image of \(\lambda(V_3) \) in \(\lambda(U_3) \) and as the image of \(\lambda(V_1) \) in \(\lambda(U_1) \) and such that \(\tilde{\mu}(F_c) \) is realized as the image of \(\mu(U_2) \) for every \(\mu \in \Lambda_2 \). It is easy to check that if \(U = U_2 \) and \(V = V_3 \), \(\tilde{\lambda}(F_c) \) is realized as the image of \(\lambda(V) \) in \(\lambda(U) \) for each \(\lambda \in \Lambda_1 \cup \Lambda_2 \).

For the second conclusion, given \(b \in B \) and \(U_0 \supseteq F_b \) choose open sets \(V \subseteq V_2 \subseteq U_2 \subseteq V_1 \subseteq U_1 \subseteq U_0 \) such that \(F_b \subseteq V \), \(U_1 \subseteq U_0 \), \(\tilde{\lambda}(F_c) \) is realized as the image of \(\lambda(V_1) \) in \(\lambda(U_1) \) for each \(F_c \subseteq V_i \) (\(i = 1, 2 \)), and \(U \) and \(V \) are preimages of contractible sets.

In the next section, it will be convenient to assume that \(E \) and \(B \) are \(Q \)-manifolds. A natural device is to replace \(p \) by the map \(p \times 1_Q : E \times Q \to B \times Q \) and appeal to Edwards' Theorem [E]. The reader can easily provide a proof for the following lemma.

Lemma 2.2. If \(p : E \to B \) is a proper map between ANR's, then for each of the properties \(P_i \) below, \(p \) has \(P_i \) if and only if \(p \times 1_Q \) has \(P_i \).

1. \(P_1 \): Being an approximate fibration.
2. \(P_2 \): Being \(\lambda \)-movable for some \(\lambda \in \Lambda_0 \).
3. \(P_3 \): Having the AHLP for a space \(X \).

Lemma 2.3. Suppose that \(p : E \to B \) is a map between ANR's and that \(p \) has the AHLP for polyhedra of dimension \(\leq q \). If \(V \subseteq U \) is a pair of open sets in \(Y \), then \(p_\# : \pi_i(U, V) \rightarrow \pi_i(U, V) \) is an isomorphism for \(i \leq q \) and is epic for \(i = q + 1 \).

The proof is a variation of a standard argument; see for example [S, Theorem 7.2.8], [L1, Corollary 2.4] and [L2, Lemma 1.2]. It uses [CD2, Lemma 1.2].

3. Proof of Theorem A

By Lemma 2.1 we may assume that both \(E \) and \(B \) are \(Q \)-manifolds. Thus, each point in \(B \) has arbitrarily small contractible open neighborhoods.

Let us say that \(p \) has property \(i \)-DUV provided that for each \(b \in B \) and each neighborhood \(U_0 \) of \(F_b \), there are neighborhoods \(V \subseteq U \) of \(F_b \) in \(U_0 \) such that given any fiber \(F_c \) in \(V \) and any neighborhood \(W_0 \) of \(F_c \) in \(V \), there are neighborhoods \(X \subseteq W \) of \(F_c \) in \(W_0 \) such that the inclusion induced map \(\nu_\# : \pi_i(X) \rightarrow \pi_i(U, W) \) is the zero homomorphism for each base point. By Lemma 3.1 of [CD2], \(p \) has property \(i \)-DUV for \(i \leq k - 1 \). We wish to prove \(k \)-DUV and \((k + 1)\)-DUV.

Given \(b \in B \) and a neighborhood \(U_0 \) of \(F_b \), apply the hypotheses and Lemma 2.1 to choose \(V \subseteq U \) satisfying the following properties.

1. \(\pi_{k-1}(F_c) \) is realized as the image of \(\pi_{k-1}(V) \) in \(\pi_{k-1}(U) \) for each \(F_c \subseteq V \),
2. \(H_iF_c \) is realized as the image of \(H_iV \) in \(H_iU \) for each \(F_c \subseteq V \) and \(i = k, k + 1 \), and
(iii) U and V are the preimages of contractible neighborhoods of b. Given a fiber $F_c \subset V$ and a neighborhood W_0 of F_c in V, apply the hypotheses and the above lemmas again to choose $X \subset W$ satisfying the following properties:

(iv) $\pi_{k-1}F_c$ is realized as the image of $\pi_{k-1}X$ in $\pi_{k-1}U$,

(v) \tilde{H}_iF_c is realized as the image H_iX in H_iW, for $i = k, k + 1$, and

(vi) X and W are preimages of contractible neighborhoods of b.

Consider the following commutative diagram.

\[
\begin{array}{ccc}
\pi_k(V, X) & \rightarrow & \pi_{k-1}X \\
\downarrow & & \downarrow \Phi_\# \\
\pi_k V & \rightarrow & \pi_{k-1} W \\
\downarrow & & \downarrow \chi_\# \\
H_k V & \leftarrow & \pi_k(U, W) \\
\Psi_\# \downarrow & & h \\
H_k W & \rightarrow & H_k(U, W)
\end{array}
\]

The horizontal rows are portions of exact sequences of pairs, the vertical arrows are inclusion-induced and the diagonal arrows are Hurewicz homomorphisms. By [L2, Lemma 5.1], (iii), and (vi), U and W are simply connected. Also by (iii) and (vi) and Lemma 2.3, $\pi_i(U, W) = 0$ for $i < k - 1$. Thus, by [S, p. 397] h is an isomorphism. By (i) and (iv) $\chi_\#|\text{im } \Phi_\#$ is monic, and by (ii) and (v) $\text{im } \Psi_\# \chi_\# = \text{im } \Psi_\#$. It is now an easy "diagram chasing" argument to show that $\nu_\#$ is zero and, hence, we have k-DUV.

Consider next the following similar diagram.

\[
\begin{array}{ccc}
\pi_{k+1}(V, X) & \rightarrow & H_k(X) \\
\downarrow & & \downarrow \Phi_* \\
H_{k+1}(V, X) & \rightarrow & H_{k+1}(V) \\
\downarrow & & \downarrow \chi_* \\
H_{k+1}(V) & \rightarrow & H_{k+1}(U, W) \\
\Psi_* \downarrow & & h \\
H_{k+1}(W) & \rightarrow & \pi_{k+1}(U, W)
\end{array}
\]

Since the proof of Theorem 3.3 of [CD2] really uses only i-DUV (rather than i-movability as stated), we see that p has AHLP for l^i, $i < i < k$. As above this implies that $\pi_k(U, W) = 0$ and h is an isomorphism. Also $\chi_*|\text{im } \Phi_*$ is monic and $\text{im } \Psi_*\chi_* = \text{im } \Psi_*\chi_*$ again. Hence $\nu_\#$ is zero and $(k + 1)$-DUV results.
We now apply Theorem 3.3 of [CD2] again to see that p has AHLP for i^i, $i < k + 1$. Hence p is a π_k-movable map by Proposition 3.5 of [CD2], so the proof is finished.

Corollary. Let $p: E \to B$ be a mapping between locally compact, separable metric ANR's. If p is UV1 and H_i-movable for all i, then p is an approximate fibration.

When Theorem A is compared to Lacher’s Hurewicz-type theorem for UV properties [L2, Theorem 4.2], a discrepancy in the analogy is noticeable. There is no hypothesis in Lacher’s theorem corresponding to the H_{k+1}-movable hypothesis in Theorem A. The reason for this difference is explained in the remark on page 51 of [CD2]. The extra hypothesis is necessary as the following example shows.

Let $f: S^3 \to S^2$ be the Hopf fibration (a generator of $\pi_3(S^2) \simeq \mathbb{Z}$), and let K be the complex obtained by attaching a 4-cell to the mapping cylinder M_f along S^3 by the identity. It follows that

\[
\tilde{H}_i(K) = 0, \quad i < 1, \\
\tilde{H}_2(K) = \mathbb{Z} \simeq \pi_2(K), \\
\tilde{H}_3(K) = 0 \simeq \pi_3(K), \quad \text{and} \\
\tilde{H}_4(K) = \mathbb{Z}.
\]

Let $\alpha: S^2 \to K$ be a generator of $\pi_2(K)$ and let $M_\alpha = (S^2 \times I \cup K)/(\{(x, 1) = f(x)\})$ be the mapping cylinder of α. Define $p: M_\alpha \to I$ by $p((x, t)) = t$, $p(K) = 1$. Then p is a π_2-movable map which is H_3-movable and 1-UV, but p is not π_3-movable, since $\pi_3(K) = 0$, $\pi_3(S^2) \neq 0$. Thus we cannot remove the assumption that p be H_{k+1}-movable in Theorem A.

4. Proofs of the applications.

Proof of Theorem B. Since $Fd(F_b) < k$, $\tilde{H}^i(F_b) = 0$ for $i > k + 1$ and each $b \in B$. It follows from [L2, Theorem 3.1] that p is an i-uv(\mathbb{Z}) map for $i > k + 1$. Hence p is H_i-movable for $i > k + 1$. By Theorem A, p is π_i-movable for all i, so p is an approximate fibration by [CD2, Corollary 3.4].

Lemma 4.1. If $f: M^m \to N^n$ is a UV1, $(\pi_i | i < k - 1)$-movable mapping between manifolds, then for each $y \in N$, $\tilde{H}_j(F_y) = 0$ for $j > \max(m - k + 1, m - n + 1)$.

Proof. For $n = 0, 1$, the result is contained in [LM, Theorem 1.3]. For $n > 2$, take $y \in N$ and $j > \max(m - k + 1, m - n + 1)$. If U is a Euclidean neighborhood of y, then U is simply connected and $\pi_{m-j}(U, U - y) = 0$. By Lemma 2.3, $\pi_{m-j}(\tilde{U}, \tilde{U} - F_y) = 0$. The relative Hurewicz theorem [S, p. 397] yields $H_{m-j}(\tilde{U}, \tilde{U} - F_y) = 0$. Since U is simply connected and f is UV1, \tilde{U} is simply connected [L2, Lemma 5.1] and thus orientable [S, p. 294]. Therefore duality [S, p. 296] can be applied to give $\tilde{H}^j(F_y) = 0$.

Proof of Theorem C. Let $y \in N$. By the above lemma $\tilde{H}^j(F_y) = 0$ for all $j > \max(m - k + 1, m - n + 1)$. Since $k > m - n + 1$ and $k > (m + 1)/2$, $\max(m - k + 1, m - n + 1) < k$. Hence $\tilde{H}^j(F_y) = 0$ for all $j > k$. By [L, Theorem 3.1], f is a j-uv map for all $j > k$; and by Theorem A, f is $(\pi_i | i < 1)$-movable. Hence f is an approximate fibration [CD2, Corollary 3.4].
REFERENCES

DEPARTMENT OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLAHOMA 74074