Reducing the codimension of Kähler immersions

H. JACOBOWITZ

Abstract. The codimension of an immersion of a Kähler manifold may be reduced if there is a holomorphic vector field normal to the manifold.

There have been several recent results on reducing the codimension of an isometric immersion (Erbacher [2], Yau [3, p. 351]) and in particular of a minimal immersion (Colares and do Carmo [1]). In connection with these, the following result for complex geometry may be of interest.

Theorem. Let M be a complex submanifold in \mathbb{C}^n with normal bundle N and let V be an open subset of M. If $N|_V$ admits r holomorphic sections, then M lies in some \mathbb{C}^{n-r}.

Recall that for any complex manifold U there is a splitting of the complexified tangent bundle $\mathbb{C} \otimes T(U) = T^{1,0} U \otimes T^{0,1} U$. For typographical convenience let us denote $T^{1,0} U$ by $T U$ for $U = M, V$ or \mathbb{C}^n and the restriction of $T^{1,0} \mathbb{C}^n$ to a bundle over M (or V) by $T^* M$ (or $T^* V$). In the theorem N is the normal bundle of M in $T^* \mathbb{C}^n$, $N = \{ \xi \in T^* M \text{ such that } \langle Z, \xi \rangle = 0 \text{ for all } Z \in TM \}$. Here we use the standard Kähler metric on $T^* \mathbb{C}^n$. N is a complex bundle over M but in general it is not a holomorphic bundle. Indeed, in an appropriate sense, it is an antiholomorphic subbundle of $T^* M$.

We may assume that V is a coordinate patch with coordinates z_1, \ldots, z_m. Let $Z_k = \partial / \partial z_k$. Let $I = (i_1, \ldots, i_k)$ be a multi-index with nonnegative integer components and let σ be a section of $T^* V$. Using the usual connection on $T \mathbb{C}^n$ we derive a new section $Z^I \sigma$ by taking the $|I|$-fold covariant derivative of σ. Here $|I| = i_1 + \cdots + i_k$ and Z^I means first differentiate i_k times with respect to Z_k, etc.

Choose some point $q \in V$. Define $S_q = \{ \xi \in T^* V_q | \xi = Z^I \sigma, I \text{ some multi-index and } \sigma \text{ some holomorphic section of } TV \}$. Then $S = \bigcup S_q$, the union taken over all points $q \in V$, is a subset of $T^* V$. We shall soon see it is a subbundle.

A section τ of $T^* V$ is said to be parallel if its covariant derivative in each direction is zero.

Lemma. Let τ be a parallel section of $T^* V$. If τ is orthogonal to S at some point $q \in V$, then τ is orthogonal to S at all points of V.

Proof. Because τ is parallel we have (1) for any local section σ of $T^* V$, $Z^I <\sigma, \tau> = <Z^I \sigma, \tau>$. This also holds for Z, so (2) $<\sigma, \tau>$ is a holomorphic function whenever σ is a local holomorphic section of $T^* V$. Now if σ is a
holomorphic section in a neighborhood of \(q \) then, since \(\tau \) is orthogonal to \(S \) at \(q \),
\[\langle Z^I \perp \sigma, \tau \rangle = 0 \text{ at } q \] and so by (1), \(Z^I \langle \sigma, \tau \rangle = 0 \) at \(q \) for all \(I \). By (2), \(\langle \sigma, \tau \rangle = 0 \) in this neighborhood. Now analytic continuation may be used to show that
\[\langle Z^I \perp \sigma, \tau \rangle = 0 \] whenever \(\sigma \) is a local holomorphic section of \(TV \).

Corollary \(S \) and its orthogonal complement are holomorphic subbundles over \(V \) of \(TC^n \) and each is invariant under parallel translation.

Proof. Let \(S^\perp = \bigcup \{ \xi \in TC^n_q | \langle s, \xi \rangle = 0 \text{ for all } s \in S_q \} \), the union taken over all \(q \in V \). Any \(\xi \in TC^n_q \) has a parallel extension. Therefore the Lemma implies that \(S^\perp \) has constant fibre dimension and is invariant under parallel translation. The same must hold for \(S \). But parallel sections are holomorphic. Thus both \(S \) and \(S^\perp \) are holomorphic subbundles.

Now we have \(T'V = S \oplus S^\perp \) and this decomposition is invariant under parallel translation. It follows easily that there is a compatible orthogonal decomposition \(C^n = C^n-p \times C^p \) where \(p = \dim S^\perp \). Pick a point \(q \in V \subset C^n \). So \(q = (q_1, q_2) \) with \(q_1 \in C^n-p \) and \(q_2 \in C^p \). Since \(TV \subset S \subset TC^n-p \), it follows that \(V \subset C^n-p \times \{q_2\} \). Now if we are given, as in the Theorem, \(r \) holomorphic sections of \(T'V \) which are orthogonal to \(TV \) then \(\dim S^\perp > r \) and so \(V \) is contained in some \(C^n-r \) and the same must be true for \(M \).

The following observation relates this Theorem to the results of Erbacher and Yau. Let \(\xi \) be a holomorphic section of \(T'V \) and assume \(\xi \) is orthogonal to \(TV \). We write \(\xi = U - iJU \) where \(U \) is in the real tangent space of \(C^n \) and \(J \) gives the complex structure. Then \(V \) as a real submanifold of \(R^{2n} \) is totally geodesic in the directions \(U \) and \(JU \).

References

Department of Mathematics, Rutgers University, Camden, New Jersey 08102