Smoothness and weak sequential compactness

Authors:
James Hagler and Francis Sullivan

Journal:
Proc. Amer. Math. Soc. **78** (1980), 497-503

MSC:
Primary 46B05

DOI:
https://doi.org/10.1090/S0002-9939-1980-0556620-4

MathSciNet review:
556620

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If a Banach space *E* has an equivalent smooth norm, then every bounded sequence in has a converging subsequence. Generalizations of this result are obtained.

**[1]**E. Asplund,*Fréchet differentiablity of convex functions*, Acta Math.**121**(1968), 31-47. MR**0231199 (37:6754)****[2]**E. Bishop and R. R. Phelps,*Support functionals of convex sets*, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, R. I., 1963, pp. 27-35. MR**0154092 (27:4051)****[3]**E. Cech and B. Pospisil,*Sur les espaces compacts*, Publ. Fac. Sci. Univ. Masaryk**258**(1938), 1-14.**[4]**J. Hagler and W. B. Johnson,*On Banach spaces whose dual balls are not**sequentially compact*, Israel J. Math.**28**(1977), 325-330. MR**0482086 (58:2173)****[5]**J. Hagler and E. Odell,*A Banach space not containing**whose dual ball is not**sequentially compact*, Illinois J. Math.**22**(1978), 290-294. MR**0482087 (58:2174)****[6]**R. Haydon,*On Banach spaces which contain**and types of measures on compact spaces*, Israel J. Math.**28**(1977), 313-324. MR**0511799 (58:23514)****[7]**K. John and V. Zizler,*On rough norms on Banach spaces*(preprint). MR**500126 (80d:46028)****[8]**V. Klee,*Some new results on smoothness and rotundity in normed linear spaces*, Math. Ann.**139**(1959), 51-63. MR**0115076 (22:5879)****[9]**D. G. Larman and R. R. Phelps,*Gateaux differentiability of convex functions on Banach spaces*, J. London Math. Soc. (to appear). MR**545208 (80m:46017)****[10]**E. E. Leach and J. H. M. Whitfield,*Differentiable functions and rough norms on Banach spaces*, Proc. Amer. Math. Soc.**33**(1972), 120-126. MR**0293394 (45:2471)****[11]**R. R. Phelps,*Support cones in Banach spaces and their applications*, Advances in Math.**13**(1974), 1-19. MR**0338741 (49:3505)****[12]**-,*Convex functions on real Banach spaces*, unpublished lecture notes.**[13]**H. P. Rosenthal,*A characterization of Banach spaces containing*, Proc. Nat. Acad. Sci. U.S.A.**71**(1974), 2411-2413. MR**0358307 (50:10773)****[14]**-,*Some recent discoveries in the isomorphic theory of Banach spaces*, Bull. Amer. Math. Soc.**84**(1978), 803-831. MR**499730 (80d:46023)****[15]**C. Stegall,*The Radon-Nikodym property in conjugate Banach spaces*. II (preprint). MR**603779 (82k:46030)****[16]**S. Troyanski,*Example of a smooth space whose conjugate has no strictly convex norm*, Studia Math.**35**(1970), 305-309. MR**0271708 (42:6589)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B05

Retrieve articles in all journals with MSC: 46B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1980-0556620-4

Article copyright:
© Copyright 1980
American Mathematical Society