CHARACTERIZATION OF THE TRACE-CLASS

PARFENY P. SAWOROTNOW

Abstract. We characterize the trace-class \(\tau(A) \) associated with an \(H^* \)-algebra \(A \) as well as the trace-class \((\tau c) \) of operators acting on a Hilbert space.

In this note we present a simple characterization of the trace-class \(\tau(A) \) associated with an \(H^* \)-algebra \(A \). An interesting special case of this result is a characterization of the trace-class \((\tau c) \) [4, p. 36] of operators acting on a Hilbert space. To the best of our knowledge this is the first time a characterization of this class has been established.

An important role in the characterization is played by the property stated in the following lemma.

Lemma 1. Let \(A \) be a proper \(H^* \)-algebra \([1]\) and let \(\tau(A) \) be its trace-class \([5]\). Then the norm \(\tau(\cdot) \) of \(\tau(A) \) has the following property \((x \in \tau(A)):\) \[(*) \quad \tau(x) = \operatorname{lub}\{|\operatorname{tr}(ax)|: a \in \tau(A) \text{ and } \operatorname{lub}\{|\operatorname{tr}(y*a*ay): y \in \tau(A), \tau(y*y) < 1\} < 1\} \].

Proof. This is a consequence of the Lemma on p. 101 of \([6]\) if we would take into account the fact that the set of the right centralizers of the form \(La: x \mapsto ax \) with \(a \in \tau(A) \) is dense in the space \(C(A) \) (defined on p. 101 of \([6]\)) and that \(||La|| = \{\operatorname{lub} \operatorname{tr}(y*a*ay): a \in \tau(A), \tau(y*y) < 1\} \).

Our characterization is based on the notion of a trace-algebra, which we are about to define.

Definition. A Banach algebra \(B \) with the norm \(n(\cdot) \) is called a trace-algebra if it has an involution \(x \mapsto x^* \), a trace (a positive linear functional) \(\operatorname{tr} \) defined on it, and has the following properties (here \(x, y \) are arbitrary members of \(B \)):

1. \(\operatorname{tr}(xy) = \operatorname{tr}(yx) \).
2. \(\operatorname{tr}(x^*x) = n(x^*x) \).
3. \(n(x^*) = n(x) \).
4. \(|\operatorname{tr}(x)| < n(x) \).
5. if \(x \neq 0 \) then \(x^*x \neq 0 \).

We also make the standard assumption "\(n(xy) < n(x) \cdot n(y) \), \(x, y \in B \)," about the continuity of multiplication.

Let \(B \) be a trace-algebra. Let \((\cdot, \cdot) \) be the scalar product on \(B \) defined in terms of the trace, \((x, y) = \operatorname{tr}(y^*x) = \operatorname{tr}(xy^*) \) \(x, y \in B \). Then \(B \) is a pre-Hilbert space. Let \(\|\cdot\| \) be the corresponding norm and let \(A \) be the completion of \(B \) with respect to this norm.

Received by the editors April 4, 1979.

Lemma 2. \[||x|| < n(x) \] holds for each \(x \in B \).

Proof. Direct verification:

\[||x||^2 = \text{tr}(x^*x) = n(x^*) < n(x) \cdot n(x) = n(x)^2. \]

Lemma 3. Multiplication of \(B \) is continuous with respect to the Hilbert space norm, \(||xy|| < ||x|| \cdot ||y|| \), for all \(x, y \in B \).

Proof. We verify directly:

\[||xy||^2 = \text{tr}(y^*x^*xy) = \text{tr}(yy^*xx) = ||x^*|| \cdot ||yy^*|| < n(x^*) \cdot n(yy^*) = n(x^*) \text{tr}(yy^*) = ||x||^2 \cdot ||y||^2. \]

Theorem 1. The completion \(A \) of the trace-algebra \(B \) is a proper \(H^* \)-algebra.

Proof. The fact that \(A \) is an \(H^* \)-algebra is easily verified. If \(x, y, z \in B \) then

\[(xy, z) = \text{tr}(z^*xy) = (y, x^*z) = \text{tr}(yz^*x) = \text{tr}((zy^*)^*x) = (x, zy^*). \]

The involution is extendable, as an isometry, to entire \(A \); it has the same property.

Let us show that \(A \) is proper. Let \(T \) be the trivial ideal \([1, \text{p. 371}]\) of \(A \). Then \(A = T \oplus T^p \) and the orthogonal complement \(T^p \) of \(T \) is a proper \(H^* \)-algebra. If \(T \neq 0 \) then there exists some member \(a \) of \(B \) such that \(a \in T^p \). Write \(a = x + y \) with \(x \in T, y \in T^p \). Then \(x \neq 0 \) and \(||a||^2 = ||x||^2 + ||y||^2 \). On the other hand we have \(a^*a = (x + y)^*(x + y) = y^*y \) since \(TA = AT = 0 \). This simply means that \(||y||^2 = \text{tr}(y^*y) = \text{tr}(a^*a) = ||a||^2 \), and this is a contradiction; \(A \) is proper.

We shall refer to the algebra \(A \) above as the \(H^* \)-algebra associated with the (trace-algebra) \(B \).

Theorem 2 (Characterization of a trace-algebra associated with an \(H^* \)-algebra). Let \(B \) be an abstract trace-algebra whose norm \(n() \) satisfies the following condition for each \(a \in B \):

\[n(a) = \text{lub}\{ |\text{tr}(xa)| : \text{lub}\{ \text{tr}(y^*x^*xy) < 1 \} \}. \]

(*)

Then there exists a proper \(H^* \)-algebra \(A \) such that \(\tau(A) = B \).

Proof. Let \(A \) be the \(H^* \)-algebra associated with \(B \). We only need to show that \(\tau(A) = B \). Let \(x, y \in B \) and \(a = xy \). Then \(n(a) = \tau(a) \) because of Lemma 1 above.

If \(x, y \in A \sim B \) then there are sequences \(x_n, y_n \) of members of \(B \) such that \(||x_n - x|| \to 0 \) and \(||y - y_n|| \to 0 \). Then it is easy to check that \(\{x_ny_n\} \) is a Cauchy sequence in the norm \(n() \):

\[n(x_ny_n - x_my_m) < n(x_n(y_n - y_m)) + n((x_n - x_m)y_m) \]

\[= \tau(x_n(y_n - y_m)) + \tau((x_n - x_m)y_m) \]

\[< ||x_n|| \cdot ||y_n - y_m|| + ||x_n - x_m|| \cdot ||y_m|| \to 0. \]

(Here we used Corollary 4 on p. 99 of [5]). Let \(a' \) be its limit, \(\lim_n n(a' - x_ny_n) = 0. \)

It follows that \(||a' - x_ny_n|| \to 0. \) But \(||xy - x_ny_n|| \to 0, \) hence \(a' = xy \), and so \(\tau(A) \subset B \).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Conversely let \(a \in B \) and consider the functional \(f_a : S \to \text{tr}(Sa) \) on the space \(\mathcal{C}(A) \) of right centralizers of \(A \) [6, p. 101]. For each \(x \in A \) consider the centralizer \(L_x : y \to xy \) acting on \(A \). Then \(\|L_x\| = \text{lub}\{|\text{tr}(y^*x^*xy)|: y \in B, n(y^*y) < 1\} \), since \(B \) is dense in \(A \), and so \(\|f_a\| = \text{lub}\{|\text{tr}(xa)|: x \in B, \|Lx\| < 1\} = n(a) \) is finite. (The last equality follows from the condition (*) in the statement of the theorem.) Invoking Theorem 1 of [6] we conclude that \(a \in \tau(A) \). Thus \(\mathcal{T} \subset \tau(A) \).

Corollary (Characterization of the trace-class \((\tau c)\) of operators on a Hilbert space). For each simple trace-algebra \(B \) satisfying condition (*) of Theorem 2 above there exists a Hilbert space \(H \) such that \(B \) is isomorphic and isometric to the trace-class \((\tau c)\) [4, p. 36] of operators acting on \(H \).

Proof. It is easy to see that the algebra \(A \) associated with \(B \) is simple. It follows then from the second structure theorem for \(H^*\)-algebras (Theorem 4.3 on p. 380 of [1]) that \(A \) can be identified with the algebra \((ac)\) [4, p. 29] of Hilbert-Schmidt operators acting on the Hilbert space \(H = L^2(\Gamma) \), where \(\Gamma = \{e_a\} \) is a maximal family of primitive doubly orthogonal selfadjoint idempotents of \(A \). Then \(B \) could be identified with the trace-class \((\tau c)\) of operators acting on \(H \).

References

Department of Mathematics, The Catholic University of America, Washington, D.C. 20064