Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Kaehler manifolds of positive curvature operator

Authors: Koichi Ogiue and Shun-ichi Tachibana
Journal: Proc. Amer. Math. Soc. 78 (1980), 548-550
MSC: Primary 53C55
MathSciNet review: 556630
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An n-dimensional compact Kaehler manifold of positive curvature operator is real cohomologically equivalent to $ {P_n}(C)$.

References [Enhancements On Off] (What's this?)

  • [1] E. Calabi and E. Vesentini, On compact locally symmetric Kaehler manifolds, Ann. of Math. 71 (1960), 472-507. MR 0111058 (22:1922b)
  • [2] S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Interscience, New York, 1969.
  • [3] D. Meyer, Sur les variétés riemanniennes à opérateur de courbure positif, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), 482-485. MR 0279736 (43:5457)
  • [4] S. Tachibana, On Kaehlerian manifolds of $ \sigma $-positive curvature operator, Natur. Sci. Rep. Ochanomizu Univ. 25 (1974), 7-16. MR 0431069 (55:4071)
  • [5] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies, no. 32, Princeton Univ. Press, Princeton, 1953. MR 0062505 (15:989f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C55

Retrieve articles in all journals with MSC: 53C55

Additional Information

Keywords: Kaehler manifold, curvature operator, cohomology, $ {P_n}(C)$
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society