Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


The Ceva property characterizes real, strictly convex Banach spaces

Authors: J. E. Valentine and S. G. Wayment
Journal: Proc. Amer. Math. Soc. 78 (1980), 559-567
MSC: Primary 51F99; Secondary 46B20, 52A01
MathSciNet review: 556633
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If a, b, c are distinct collinear points of a metric space, then

$\displaystyle (a,b,c) = \left\{ {\begin{array}{*{20}{c}} {ab/bc} \hfill & {{\te... ... \\ { - (ab/bc)} \hfill & {{\text{otherwise}}.} \hfill \\ \end{array} } \right.$

A metric space satisfies the Ceva Property provided for each triple of noncollinear points p, q, r, if s,t,u are points distinct from p, q, r on the metric lines $ L(p,q),L(q,r)$, and $ L(r,p)$, respectively, then the metric lines $ L(p,t),L(q,u)$, and $ L(r,s)$ have a common point if and only if $ (p,s,q)(q,t,r)(r,u,p) = 1$, and $ pq/ps \ne pu/pr$. In the euclidean plane, the requirement that $ pq/ps \ne pu/pr$ forces the lines $ L(r,s)$ and $ L(q,u)$ to have a common point. Thus the case of parallel lines is avoided and the Ceva Property is meaningful in an arbitrary metric space. The main result of the paper is that a complete, convex, externally convex, metric space is a strictly convex Banach space over the reals if and only if it satisfies the Ceva Property.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 51F99, 46B20, 52A01

Retrieve articles in all journals with MSC: 51F99, 46B20, 52A01

Additional Information

PII: S 0002-9939(1980)0556633-2
Keywords: Banach space, Ceva Property, convex, externally convex, metric space
Article copyright: © Copyright 1980 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia