A NOTE ON NORMAL COMPLEMENTS IN $\mod p$ ENVELOPES

LEE R. IVORY

Abstract. Let G be a finite p-group and let $Z_p[G]$ denote the group ring of G over the field of p elements. The mod p envelope of G, denoted by G^*, is the set of elements of $Z_p[G]$ with coefficient-sum equal to 1. Many examples of p-groups that have a normal complement in G^* have been found, including ten of the fourteen different groups of order 16. This note proves that one of the remaining groups of order 16 has a normal complement. The remaining groups of order 16 are the dihedral, semidihedral, and generalized quaternion groups of order 2^n, $n = 4$. We will prove that these groups do not have a normal complement for any $n > 4$.

When G is a finite p-group and Z_p is the field of integers modulo p, it is well known that the group ring $Z_p[G]$ is a local ring with units $U(Z_p[G]) = \{\Sigma k_g \in Z_p[G] : \Sigma k_g \neq 0\}$. The mod p envelope of G is $G^* = \{\Sigma k_g : \Sigma k_g = 1\}$, and it is easy to see that G^* is a finite p-group. D. L. Johnson [1] defined the class L_p of finite p-groups to consist of those G which have a normal complement in G^*. He made several observations about this class of groups and gave numerous examples of groups belonging to this class. He pointed out that the “smallest” group not definitely known to belong to L_2 is the dihedral group of order 16. This group is not in L_2 and, in fact,

Theorem 1. The dihedral, semidihedral, and generalized quaternion 2-groups of order 16 and greater are not in L_2.

Proof. Let G be the dihedral group $\langle a, b : a^2 = 1, b^{2^n+1} = 1, a^{-1}ba = b^{-1} \rangle$, or the semidihedral group $\langle a, b : a^2 = 1, b^{2^n+1} = 1, a^{-1}ba = b^{2^n-1} \rangle$ or the generalized quaternion group $\langle a, b : a^2 = b^{2^n}, b^{2^n+1} = 1, a^{-1}ba = b^{-1} \rangle$, where $n > 2$.

First consider the case $n = 2$, i.e, G has order 16. Let $N < G^*$ and $G^* = GN$. We will show that $b^4 \not\in N$, and hence N cannot be a normal complement. For any $g \in G$, either $g^2 \in \langle b^4 \rangle$ or $(bg)^2 \in \langle b^4 \rangle$. Since $N < G^*$ and $G^* = GN$, for any $\alpha \in G^*$, either $\alpha^2 \in \langle b^4 \rangle N$ or $(\alpha b)^2 \in \langle b^4 \rangle N$. Let $(u, v) = u^{-1}v^{-1}uw$ denote the commutator of u and v. Clearly $(\langle b^4 \rangle N, G^*) \subseteq N$, and thus for any $\alpha \in G^*$, either $(\alpha^2, \beta) \in N$ for all $\beta \in G^*$, or $((\alpha b)^2, \beta) \in N$ for all $\beta \in G^*$.

Note that $a^{-1}ba = b^{4j-1}$ where $j = 1$ when G is the semidihedral group and $j = 0$, otherwise. Let $\alpha = 1 + a + b \in G^*$. It is easy to compute that

$$a^2 = 1 + a^2 + b^2 + a(b + b^{4j-1})$$

and

$$(a^2)^{ab-2} = 1 + a^2 + b^{-2} + a(b^{4j-1} + b)b^{-4} = [b^4 + a^2b^4 + b^2 + a(b^{4j-1} + b)]b^4 = a^2b^4,$$

Received by the editors October 30, 1978 and, in revised form, June 11, 1979.

© 1980 American Mathematical Society 0002-9939/80/0000-0201/$02.00

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
since \(a^2 = 1\) or \(b^4\). Thus \((a^2, ab^{-3}) = b^4\). It is also easy to compute that

\[
(ba)^2 = b^2 + b^4 + a^2b^4 + a(b^{-2} + b^4 + b^{4+1} + b^{4-3})
\]

and

\[
[(ba)^2]^{ab^{-3}} = b^{-2} + b^4 + a^2b^4 + a(b^2 + b^4 + b^{-1} + b^3)b^{4-6}
\]

\[
= [b^2 + 1 + a^2b^{4-4} + a(b^4 + b^{-2} + b^{4-3} + b^{4+1})]b^4
\]

\[
= (ba)^2b^4,
\]

since \(a^2b^4 = 1\) or \(b^4\). Thus \(((ba)^2, ab^{-3}) = b^4\). It now follows that \(b^4 \in N\) and the theorem is established for \(n = 2\).

Consider the case \(n > 3\). Assume that \(N\) is a normal complement of \(G\) in \(G^*\). Let \(\lambda = 1 + b^{2n} \in \mathbb{Z}_2[G]\) and

\[
K = \{a_0 + \sum k_i a^i b^j a G^*: a_0 = 1 \text{ or } b^{2n}\}.
\]

It is easy to see that \(K < G^*\) since \(\lambda\) is central in \(\mathbb{Z}_2[G]\). Moreover, \(K\) has exponent 2 since \(\lambda^2 = 0\). Consequently, \(KN/N\) is normal and has exponent 2 in \(G^*/N \simeq G\). Each of our groups \(G\) has only one normal subgroup with exponent 2, namely \(\langle b^{2n} \rangle\), and thus \(K \subseteq \langle b^{2n} \rangle N\).

Let \(M = \langle b^{2n} \rangle N\). Clearly \(M < G^*\) and \(K \subseteq M\) since \(n > 3\). Since \(N \cap G = \langle 1 \rangle\), \(\{a^ib^j: 0 < i < 1, 0 < j < 7\}\) is a complete set of coset representatives for \(M\) in \(G^*\). It follows that \(G^*/M\) is the dihedral group of order 16. Thus for any \(aM \in G^*/M\), either \(a^2M\) or \((ba)^2M\) is central in \(G^*/M\). Thus for any \(a \in G^*\), either \((a^2, \beta) \in M\) for all \(\beta \in G^*\), or \(((ba)^2, \beta) \in M\) for all \(\beta \in G^*\).

Let \(a = 1 + a + b \in G^*\). It is easy to compute that

\[
a^2 = 1 + a^2 + b^2 + a(b + b^{2^{n-1}})
\]

\[
= [b^2 + a(b + b^{2^{n-1}})][1 + (b^2 + a(b + b^{2^{n-1}}))^{-1}(1 + a^2)]
\]

\[
= [b^2 + a(b + b^{2^{n-1}})]k,
\]

where \(k \in K\) since \(1 + a^2 = 0\) or \(\lambda\).

Then

\[
(a^2)^{ab^{-3}} = [b^{-2} + a(b^{2^{n-1}} + b)b^{-4}]k^{ab^{-3}}
\]

\[
= [b^2 + a(b^{2^{n-1}} + b)]kk^{-1}b^{-4}k^{ab^{-3}} = a^2b^{-4}m,
\]

where \(m \in M\) since \(k \in K \subseteq M < G^*\). Thus \((a^2, ab^{-3}) \in b^{-4}M\). Also it is easy to compute that

\[
(ba)^2 = b^2 + b^4 + a^2b^{2n} + a(b^{-2} + b^{2n} + b^{2n+1} + b^{2n-3})
\]

\[
= \gamma[1 + \gamma^{-1}(1 + a^2b^{2n})],
\]

where

\[
\gamma = 1 + b^2 + b^4 + a(b^{-2} + b^{2n} + b^{2n+1} + b^{2n-3}).
\]
Thus \((ba)^2 = \gamma k\), \(k \in K\). Then
\[
[(ba)^2]^{ab^{-3}} = [1 + b^{-2} + b^{-4} + a(b^2 + b^{2^2} + b^{-1} + b^3)b^{2^2 - 6}]^{ab^{-3}}
\]
\[
= [b^4 + b^2 + 1 + a(b^{2^2} + b^{-2} + b^{2^2 - 3} + b^{2^2 + 1})]^{ab^{-3}}
\]
\[
= (ba)^2 b^{-4m}, \text{ where } m \in M.
\]

Thus \(((ba)^2, ab^{-3}) \in b^{-4}M\). It now follows that \(b^{-4} \in M\), a contradiction, and the proof is complete.

It is known that ten of the fourteen groups of order 16 belong to \(L_2\) (see Johnson [1], and L. E. Moran and R. N. Tench [2]). The above theorem proves that three of the other groups are not in \(L_2\). The following theorem proves that the remaining group of order 16 is in \(L_2\).

Theorem 2. The group \(G = \langle a, b : a^2 = 1, b^8 = 1, a^{-1}ba = b^5 \rangle\) belongs to \(L_2\).

Proof. Each \(\alpha \in G^*\) can be written uniquely as
\[
\alpha = u_0 + u_1 b + u_2 b^2 + u_3 b^3 + u_4 a + u_5 ab + u_6 a^2 b + u_7 ab^3,
\]
where each \(u_i = 0, 1, b^4\) or \(1 + b^4\).

Let \(\tilde{\alpha} : Z_2[G] \rightarrow Z_2\) be the augmentation homomorphism, i.e., \(\tilde{\alpha}\) is the coefficient-sum of \(\alpha\). Let
\[
H = \{ \alpha \in G^* : \tilde{u}_1 + \tilde{u}_3 + \tilde{u}_5 + \tilde{u}_7 = 0, \tilde{u}_4 + \tilde{u}_5 + \tilde{u}_6 + \tilde{u}_7 = 0, \tilde{u}_2 + \tilde{u}_6 = 0 \}.
\]

Of course \(\alpha \in G^*\) implies \(u_0 + u_1 + \cdots + u_7 = 1\), and so \(\alpha \in H\) implies \(u_0 + u_4 = 1\). A tedious but straightforward calculation shows that \(\alpha, \beta \in H\) implies \(\alpha\beta \in H\), and thus \(H\) is a subgroup of \(G^*\). Clearly \(o(H) = 2^{12}\) and a complete set of coset representatives for \(H\) in \(G^*\) is \(\{1, b, \ldots, ab^3\}\). Let \(\lambda = 1 + b^4\) and let
\[
M = \{ \alpha \in G^* : \alpha = 1 + (c_1 + c_3 + c_5 + c_7)\lambda + c_1 b\lambda + c_2 b^2\lambda
\]
\[
+ c_3 b^3\lambda + c_4 a\lambda + c_5 ab\lambda + c_6 ab^2\lambda + c_7 ab^3\lambda, \text{ each } c_i = 0 \text{ or } 1 \}\}.
\]

Clearly \(\lambda\) is central in \(Z_2[G]\) and \(\lambda^2 = 0\), so \(M\) is a subgroup of \(H\). Another calculation shows that for \(h \in H\),
\[
h^2 = 1 + (u_4 u_5 + u_6 u_7) b \lambda + (\tilde{u}_3 + \tilde{u}_5) b^2 \lambda + (u_4 u_5 + u_3 u_6) b^3 \lambda + (u_1 u_7 + u_3 u_5) a \lambda
\]
\[
+ (u_1 u_4 + u_3 u_6) a b \lambda + (u_1 u_5 + u_3 u_7) a b^2 \lambda + (u_1 u_6 + u_3 u_4) a b^3 \lambda \in M.
\]

Note that \(u_i u_j = 0, 1, b^4\) or \(1 + b^4\); \(u_i u_j = 0\) or \(\lambda\); and
\[
(u_i u_j + u_k u_i) \lambda = (\tilde{u}_i \tilde{u}_j + \tilde{u}_k \tilde{u}_i) \lambda.
\]

Since \(H\) is a 2-group, the Frattini subgroup of \(H\), \(\phi(H)\), is generated by \(H^2\) and thus \(\phi(H) \subseteq M\).

Clearly \(b^4 \in H\) but \(b^4 \notin M\). We can build a basis for \(H\) by first finding a basis for \(M\) over \(\phi(H)\), adjoining \(b^4\), and then completing a basis for \(H\). Thus \(H = \langle b^4, h_1, \ldots, h_s, \phi(H) \rangle\). Let \(N = \langle h_1, \ldots, h_s, \phi(H) \rangle\). We will show that \(N\) is a normal complement of \(G\) in \(G^*\). Clearly \([H : N] = 2\) and thus \(o(N) = 2^{11}\), as required. Since \(G \cap H = \langle 1, b^4 \rangle\), we have \(G \cap N = \langle 1 \rangle\). Thus \(o(GN) = 2^{15}\) and \(GN = G^*\). All that remains is to show that \(N \triangleleft G^*\). Since \(G\) is a complete set of coset representatives for \(N\) in \(G^*\), it suffices to show that \(\langle N, a \rangle, \langle N, b \rangle \subset N\). In
fact, we will show that $h \in H$ implies $(h, a),(h, b) \in M$. A straightforward calculation shows that $h^a = h + (u_1 b + u_3 b^3 + u_5 a b + u_7 a b^3)\lambda$, and thus $(h, a) = 1 + h^{-1}(u_1 b + u_3 b^3 + u_5 a b + u_7 a b^3)\lambda$.

Since h^{-1} is an odd power of h and $h^2\lambda = \lambda$, we have

$$(h, a) = 1 + h(u_1 b + u_3 b^3 + u_5 a b + u_7 a b^3)\lambda$$

$$= 1 + (u_0 u_1 + u_2 u_3 + u_4 u_5 + u_6 u_7) b \lambda + (u_0 u_3 + u_1 u_2 + u_4 u_7 + u_5 u_6) b^3 \lambda$$

$$+ (u_0 u_5 + u_2 u_7 + u_1 u_4 + u_3 u_6) a b \lambda$$

$$+ (u_0 u_7 + u_2 u_5 + u_3 u_4 + u_1 u_6) a b^3 \lambda \in M.$$

A similar computation shows that $(h, b) \in M$, and the proof is complete.

The above proof shows that a normal complement N exists, but gives little information about how to find N. In fact, an explicit computer calculation shows that one satisfactory N is the normal subgroup of G^* generated by $b^2 + a + ab^2$, $b + a + ab$, $1 + ab + ab^3$ and $b + a + ab^3$.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, ALABAMA 35486