Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Differential criteria for flatness

Author: Sarah Glaz
Journal: Proc. Amer. Math. Soc. 79 (1980), 17-22
MSC: Primary 13C11; Secondary 13B10
MathSciNet review: 560576
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce differential algebra methods to the study of flatness over Noetherian domains. The results concern the specific cases of ideals and attempt to use the underlying divisibility properties of the ring. They concern mostly regular (geometric) rings and one-dimensional rings.

References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
  • [2] W. Fulton, Algebraic curves, Benjamin, New York, 1969. MR 0313252 (47:1807)
  • [3] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 0254021 (40:7234)
  • [4] H. Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 0266911 (42:1813)
  • [5] -, Formal power series rings over polynomial rings. I, Number Theory, Algebraic Geom. and Commutative Alg. in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, pp. 521-528. MR 0366910 (51:3156)
  • [6] M. Nagata, Local rings, Interscience, New York, 1962. MR 0155856 (27:5790)
  • [7] J. D. Sally and W. V. Vasconcelos, Flat ideals. I, Comm. Algebra 3 (1975), 531-543. MR 0379466 (52:371)
  • [8] O. Zariski and P. Samuel, Commutative algebra, Van Nostrand, Princeton, N. J., 1958. MR 0090581 (19:833e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13C11, 13B10

Retrieve articles in all journals with MSC: 13C11, 13B10

Additional Information

Keywords: Regular ring, C. M. ring, affine domain, derivation, flat
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society