Hausdorff measure and Carleson thin sets

Author:
Joel H. Shapiro

Journal:
Proc. Amer. Math. Soc. **79** (1980), 67-71

MSC:
Primary 28A05; Secondary 28A12, 30D55

DOI:
https://doi.org/10.1090/S0002-9939-1980-0560586-0

MathSciNet review:
560586

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A *Carleson set* is a closed subset of the unit circle *T* having measure zero, whose complement is a disjoint union of open subarcs with . Suppose *H* is the Hausdorff measure on *T* induced by the determining function *h*, where is strictly decreasing. We show that for every Carleson set *E* if and only if . Consequently the nonintegrability of is necessary and sufficient for every positive Borel measure on *T* with modulus of continuity to place zero mass on every Carleson set.

**[1]**P. Ahern,*An example in the theory of functions*(preprint). MR**1022240 (90i:32009)****[2]**A. Beurling,*Ensembles exceptionnels*, Acta Math.**72**(1940), 1-13. MR**0001370 (1:226a)****[3]**L. Carleson,*Sets of uniqueness for functions regular in the unit circle*, Acta Math.**87**(1952), 325-345. MR**0050011 (14:261a)****[4]**P. L. Duren, B. W. Romberg and A. L. Shields,*Linear functionals on**spaces with*, J. Reine Angew. Math.**238**(1969), 32-60. MR**0259579 (41:4217)****[5]**W. Hayman,*On Nevanlinna's second theorem and extensions*, Rend. Circ. Mat. Palermo (2)**2**(1953), 346-392. MR**0063450 (16:122g)****[6]**J.-P. Kahane and R. Salem,*Ensembles parfaits et séries trigonométriques*, Hermann, Paris, 1963. MR**0160065 (28:3279)****[7]**J. D. Nelson,*A characterization of zero sets for*, Michigan Math. J.**18**(1971), 141-147. MR**0283177 (44:410)****[8]**D. J. Newman, J. T. Schwartz and H. S. Shapiro,*On generators of the Banach algebras**and*, Trans. Amer. Math. Soc.**107**(1963), 466-484. MR**0150579 (27:575)****[9]**W. P. Novinger,*Holomorphic functions with infinitely differentiable boundary values*, Illinois J. Math.**15**(1971), 80-90. MR**0269861 (42:4754)****[10]**H. S. Shapiro,*Some remarks on weighted polynomial approximations of holomorphic functions*, Mat. Sb.**2**(1967), 285-294.**[11]**J. H. Shapiro,*A characterization by Cauchy transforms of the Beurling-Carleson-Hayman thin sets*, Michigan Math. J. (to appear). MR**584698 (82b:30039)****[12]**B. A. Taylor and D. L. Williams,*Ideals in rings of analytic functions with smooth boundary values*, Canad. J. Math.**22**(1970), 1266-1283. MR**0273024 (42:7905)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28A05,
28A12,
30D55

Retrieve articles in all journals with MSC: 28A05, 28A12, 30D55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1980-0560586-0

Keywords:
Hausdorff measure,
Carleson set,
singular measure,
modulus of continuity

Article copyright:
© Copyright 1980
American Mathematical Society