ISOMETRIC IMMERSIONS OF COMPLETE RIEMANNIAN MANIFOLDS INTO EUCLIDEAN SPACE

CHRISTOS BAIKOUSIS AND THEMIS KOUFOGIORGOS

ABSTRACT. Let M be a complete Riemannian manifold of dimension n, with scalar curvature bounded from below. If the isometric immersion of M into euclidean space of dimension $n + q$, $q < n - 1$, is included in a ball of radius λ, then the sectional curvature K of M satisfies $\limsup K > \lambda^{-2}$. The special case where M is compact is due to Jacobowitz.

Generalizing results by Tompkins, Chern and Kuiper, and Otsuki, Jacobowitz proved that a compact n-dimensional Riemannian manifold whose sectional curvatures are everywhere less than constant λ^{-2} cannot be isometrically immersed into euclidean space of dimension $2n - 1$ so as to be contained in a ball of radius λ (see [1] and the references therein). In this note we shall prove a quantitative result concerning isometric immersions, which includes Jacobowitz’s theorem as a special case.

The proof of our result will consist in a simple application of a theorem by Omori [3], which we now formulate.

Let M be a complete Riemannian manifold with sectional curvature bounded from below; consider a smooth function $f: M \to \mathbb{R}$ with $\sup f < \infty$. For any $\epsilon > 0$ there exists a point $p \in M$ where $||\text{grad } f|| < \epsilon$ and $\nabla^2 f(X, X) < \epsilon$ for all unit vectors $X \in T_pM$. By $\nabla^2 f$ we mean the Hessian form of f, defined by $\nabla^2 f(X, Y) = \langle \nabla_X \text{grad } f, Y \rangle$.

Theorem 1. Let M be a complete n-dimensional Riemannian manifold with scalar curvature R bounded from below. Assume that there exists an isometric immersion φ of M into euclidean space of dimension $n + q$, $q < n - 1$, so that $\varphi(M)$ is included in a ball of radius λ. Then $\limsup K > \lambda^{-2}$, where K is the sectional curvature of M.

Corollary. A complete two-dimensional Riemannian manifold, immersed isometrically into euclidean three-space, and whose Gaussian curvature K satisfies $-\infty < -a^2 < K < 0$, is extrinsically unbounded.

Proof of the Theorem. If $n = 2$ then $R = 2K$ and we have $\inf K > -\infty$. If $n > 2$ and $\inf K = -\infty$, then $\inf R > -\infty$ easily implies $\sup K = +\infty$ and the theorem follows. We may therefore assume $\inf K > -\infty$.

We shall apply Omori’s theorem to the “distance” function $F = \langle \varphi, \varphi \rangle/2$; φ is considered here as tangent vector in euclidean space E^{n+q}. By assumption, we have

Received by the editors June 11, 1979.

Key words and phrases. Isometric immersion, scalar curvature, sectional curvature, complete Riemannian manifold.
\(\| \varphi \| < \lambda \) and \(f < \lambda^2/2 \), taking the origin to be the center of the ball wherein \(\varphi(M) \) lies. Therefore, to any natural number \(m \), there exists a point \(p_m \in M \) where \(\nabla^2 f(X, X) < 1/m \) for all \(X \in T_{p_m}M \) with \(\| X \| = 1 \). In order to compute the Hessian of \(f \), we identify every tangent vector \(X \) with \(\varphi_*(X) \) and obtain
\[
\nabla^2 \varphi = X,
\]
where \(\nabla^2 \) denotes the connection of \(E^{n+q} \). Now using this and the Gauss formula, we compute easily \(\nabla^2 f(X, Y) = \langle \nabla X, Y \rangle + \langle L(X, Y), \varphi \rangle \), where \(L \) stands for the second fundamental form of the immersion. Thus at \(p_m \) and for every nonzero \(X \in T_{p_m}M \) we have \(1 + \langle L(X, X), \varphi \rangle \cdot \| X \|^{-2} < m^{-1} \), hence
\[
\lambda^{-1}(1 - m^{-1}) < \| L(X, X) \| \cdot \| X \|^{-2}.
\]
From (*) we conclude that, at \(p_m \in M \), we have \(L(X, X) \neq 0 \) for \(X \neq 0 \). Now we use, as in [1], a well-known algebraic lemma [2, p. 28]. Let \(L: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^q \) be symmetric, bilinear and satisfy \(L(X, X) \neq 0 \) for \(X \neq 0 \); if \(q < n - 1 \), there exist linearly independent \(X, Y \) so that \(L(X, Y) = 0 \) and \(L(X, X) = L(Y, Y) \). We pick two such vectors \(X, Y \) in \(T_{p_m}M \), apply (*) and obtain
\[
\lambda^{-2}(1 - m^{-1})^2 < \| L(X, X) \| \cdot \| L(Y, Y) \| \cdot \| X \|^{-2} \cdot \| Y \|^{-2} < (\langle L(X, X), L(Y, Y) \rangle - \| L(X, Y) \|^2) \cdot (\| X \|^2 \| Y \|^2 - \langle X, Y \rangle^2)^{-1}.
\]
By the Gauss equation, the rightmost term in these inequalities is the sectional curvature of \(M \) at \(p_m \) for the plane spanned by \(X \) and \(Y \). Now letting \(m \) go to infinity, we deduce \(\lambda^{-2} \leq \lim \sup_{p \in M} K(X \wedge Y) \) and thus prove the theorem.

It is noteworthy that the above proof includes a generalization of the following well-known result. If a compact hypersurface \(M \) in \(E^N \) is contained in a ball of radius \(\lambda \), then there exists a point on \(M \) where all the normal curvatures are in absolute value not less than \(\lambda^{-1} \). For a submanifold \(M \) of \(E^N \), of arbitrary codimension, we define the absolute normal curvature at a point \(p \in M \) and in the direction \(X \in T_pM, \| X \| = 1 \), to be \(\| L(X, X) \| \). Let
\[
C(p) = \min \{ \| L(X, X) \| / X \in T_pM \text{ and } \| X \| = 1 \}.
\]

THEOREM 2. Let \(M \) be a complete submanifold of \(E^N \) with sectional curvature bounded from below. If \(M \) is contained in a ball of radius \(\lambda \), then \(\lim \sup_{p \in M} C(p) > \lambda^{-1} \).

PROOF. Apply Omori's theorem as in Theorem 1 to \(\langle \varphi, \varphi \rangle/2 \). From inequality (*) we immediately obtain the conclusion.

We wish to thank D. Koutroufiotis for his aid in this work.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOANNINA, IOANNINA, GREECE