ON THE ITERATIONS OF DIFFEOMORPHISMS WITHOUT C°-Ω-EXPLOSIONS: AN EXAMPLE

KEN SAWADA

ABSTRACT. In this note we construct a diffeomorphism \(f \) such that \(f \) has no C°-Ω-explosion but \(f^2 \) has Ω-explosion.

The purpose of this note is to give an example of a diffeomorphism \(f \) on a 2-sphere \(S^2 \) such that \(f \) has no C°-Ω-explosion but \(f^2 \) has Ω-explosion. As noted below, this is accomplished by finding a diffeomorphism \(f \) without C°-Ω-explosion for which \(Ω(f) ≠ Ω(f^2) \).

Before proceeding to construct the example, we shall make a few observations on the iterations of diffeomorphisms without C°-Ω-explosions:

A point \(x \in S^2 \) is said to be a chain recurrent point of \(f \) if for any \(ε > 0 \) there exists a sequence \(\{x_0, \ldots, x_n\} \) of points on \(S^2 \) with \(x_0 = x_n = x \) and \(d(f(x_i), x_{i+1}) < ε \) where \(d \) is a metric on \(S^2 \) (cf. [1]). We denote the sets of chain recurrent points and nonwandering points of \(f \) by \(θl(f) \) and \(θf(f) \) respectively. By definitions, it follows that \(Ω(f^m) \subset Ω(f) \subset θf(f) = θl(f^m), m ≠ 0 \). In [2, Theorem 3.11] M. Shub showed that \(f \) has no C°-Ω-explosion if and only if \(θl(f) = θf(f) \). From the above facts, we have

Proposition. A diffeomorphism \(f^m \) has no C°-Ω-explosion if and only if \(f \) has no C°-Ω-explosion and \(Ω(f) = Ω(f^m) \).

Hence for our purpose, it is sufficient to construct a diffeomorphism \(f \) on \(S^2 \) such that \(f \) has no C°-Ω-explosion and \(Ω(f) ≠ Ω(f^2) \), i.e., \(θl(f) = Ω(f) ≠ Ω(f^2) \).

The author wishes to thank Professor H. Noguchi, Y. Togawa and K. Yano for helpful comments to this note.

The construction. At first we take a diffeomorphism \(f' \) on \(S^2 \) to be the time one map of the flow \(ψ_t \) on \(S^2 \) as pictured in Figures 1 and 2. Here Figures 1 and 2 show the flow \(ψ_t \) on the upper and the lower hemispheres, \(H^+ \) and \(H^- \) respectively, and \(S^1 \) is the equator, \(0 \) and \(0' \) are the north and the south poles respectively, and \(A^+ \) is the antipodal point of \(A \).

For \(f' \), there are two fixed points \(A \) and \(A' \), two fixed sources \(0 \) and \(0' \), and clearly \(S^1 \) is an invariant set. Furthermore let \(f \) satisfy that \(|θ(f'(x))| < |θ(x)| \) for any \(x \in S^2 - (S^1 ∪ 0 ∪ 0') \) where \(θ(x) \) is the latitude of \(x \) \((-π/2 < θ(x) < π/2)\) and \(|(\ldots)|\) is the absolute value of \((\ldots)\).
Now we construct a diffeomorphism \(f \) on \(S^2 \) as follows; \(f = \rho \circ f' \) where \(\rho \) is the map such that \(\rho(x) \) is the antipodal point of \(x \) for any \(x \in S^2 \). Note that \(A, A' \) are periodic points, \(0, 0' \) are periodic sources of period 2 of \(f \), and that \(f \) satisfies

\[
|\theta(f(x))| < |\theta(x)| \quad \text{for any } x \in S^2 - (S^1 \cup 0 \cup 0'). \tag{\ast}
\]

Lemma. \(\mathcal{R}(f) = \Omega(f) \neq \Omega(f^2) \).

Proof. We first show that \(\mathcal{R}(f) = 0 \cup 0' \cup S^1 \). Clearly \(0 \cup 0' \cup S^1 \subset \mathcal{R}(f) \). Hence it suffices to show that \(x \notin \mathcal{R}(f) \) for \(x \in S^2 - (0 \cup 0' \cup S^1) \). Let \(\theta = |\theta(x)| \) and \(B = \{ y \in S^2 : |\theta(y)| < \theta \} \). Then by (\ast), \(|\theta(f(y))| < \theta \) for any \(y \in B \).

Since \(B \) is compact, there exists \(\epsilon > 0 \) such that \(|\theta(y')| < \theta \) for any \(y' \in U_\epsilon(f(B)) \) (\(U_\epsilon(\ldots) \) is an \(\epsilon \)-neighborhood of \(\ldots \)). Let \(\{x_0, \ldots, x_m\} \) be a sequence of points on \(S^2 \) with \(x_0 = x \), \(d(f(x_i), x_{i+1}) < \epsilon \). Then \(x_1 \in U_\epsilon(f(B)) \subset B \) since \(x_0 = x \in B \). By induction, \(x_m \in U_\epsilon(f(B)) \) so that \(|\theta(x_m)| < \theta = |\theta(x)| \). Therefore there exists no sequence \(\{x_0, \ldots, x_n\} \) of points on \(S^2 \) with \(x_0 = x_n = x \) and \(d(f(x_i), x_{i+1}) < \epsilon \). Hence \(x \notin \mathcal{R}(f) \) and \(\mathcal{R}(f) = 0 \cup 0' \cup S^1 \).

We next show that \(\mathcal{R}(f) = \Omega(f) \neq \Omega(f^2) \). Clearly \(0, 0', A, A' \in \Omega(f) \in \Omega(f^2) \).

Let \(p \in S^1 - (A \cup A') \), \(V \) be a neighborhood of \(p \) and \(V^+ = V \cap (H^+ - S^1) \).

Without loss of generality, we may assume that \(f^{2n}(p) \to A' \) as \(n \to \infty \). Then
$f^{2n}(V^+)$ is pressed toward S^1 as in Figure 3. Therefore for a sufficiently large n, $f^{2n+1}(V) \cap V = f^{2n+1}(V^+) \cap V \neq \emptyset$. Hence $p \in \Omega(f)$ and $\mathcal{R}(f) = \Omega(f)$.

On the other hand, $(f^2)^n(V) \cap V = f^{2n}(V) \cap V = \emptyset$. Hence $p \not\in \Omega(f^2)$. Therefore $\mathcal{R}(f) = \Omega(f) \neq \Omega(f^2)$.

Hence f has no C^0-Ω-explosion but f^2 has Ω-explosion.

REFERENCES

Department of Mathematics, Waseda University, Shinjuku, Tokyo 160, Japan