A TWO POINT BOUNDARY VALUE PROBLEM WITH JUMPING NONLINEARITIES

ALFONSO CASTRO B.

Abstract. We prove that a certain two point BVP with jumping nonlinearities has a solution. Our result generalizes that of [2]. We use variational methods which permit giving a minimax characterization of the solution. Our proof exposes the similarities between the variational behavior of this problem and that of other semilinear problems with noninvertible linear part (see [5]).

1. Introduction and notations. Here we study the two point BVP

\[
\begin{cases}
 u''(t) + g(u(t)) = p(t), & t \in [0, \pi], \\
 u(0) = u(\pi) = 0.
\end{cases}
\]

We assume that \(g: \mathbb{R} \to \mathbb{R} \) and \(p: [0, \pi] \to \mathbb{R} \) are continuous functions such that

(1.1) \(g(u) = u \) for \(u > 0 \).
(1.2) There exists \(a > 0 \) such that \(g(u)/u \to 1 + a \) as \(u \to -\infty \).
(1.3) \(\int_0^\pi p(t)\sin(t) \, dt < 0 \).

The purpose of this paper is to give a variational proof of

Theorem A. If (1.1), (1.2) and (1.3) are satisfied then (I) has a solution.

Theorem A is a generalization of a result due to L. Aguinaldo and K. Schmitt (see [2]). The main difference between our approach and that of [2] is that we use variational methods while the proof of [2] is based on degree theoretical arguments. As a byproduct of our technique for proving Theorem A we observe the functional \(J \), to be defined below, has a variational behavior similar to that of the functional corresponding to other semilinear problems with noninvertible linear part. We use a variant of a minimax principle proved first by P. Rabinowitz to obtain a variational proof of the theorem due to Ahmad, Lazer and Paul (see [3]).

Let \(H = H^1_0[0, \pi] \) (see [1, p. 44]) be the Sobolev space of square integrable functions defined on \([0, \pi] \) vanishing on \(\{0, \pi\} \) with generalized first derivative in \(L^2[0, \pi] \). The inner product and norm in \(H \) are given by

\[
\langle u, v \rangle = \int_0^\pi u'(t)v'(t) \, dt \quad \text{and} \quad ||u||^2 = \langle u, u \rangle.
\]

According to Sobolev’s lemma (see [1, p. 95]) \(H \) can be imbedded in the space of continuous functions defined on \([0, \pi] \). Thus, there exists a real number \(c > 0 \) such

Presented to the Society, January 25, 1979; received by the editors October 1, 1978 and, in revised form, April 2, 1979.

AMS (MOS) subject classifications (1970). Primary 34B15, 58E05.

Key words and phrases. Critical point, weak solution, jumping nonlinearities.
that

$$\max_{t \in [0, \pi]} |u(t)| < c\|u\| \quad \text{for all } u \in H. \quad (1.4)$$

We let $J: H \rightarrow \mathbb{R}$ be defined by

$$J(u) = \int_0^\pi \left(\frac{(u'(t))^2}{2} - G(u(t)) + p(t)u(t) \right) dt, \quad (1.5)$$

where $G(u) = \int_0^u g(s) \, ds$. It is easy to check that

$$\langle \nabla J(u), v \rangle \equiv \lim_{t \to 0} \frac{J(u + tv) - J(u)}{t} = \int_0^\pi u'v' - g(u)v + pv \quad \text{for all } u, v \in H. \quad (1.6)$$

By standard regularity theory it follows that if $\nabla J(u) = 0$ then u is a solution of (I). Therefore, from now on we aim our work towards proving that J has a critical point. In the rest of this paper the symbol \int means integral from 0 to π unless the integration limits are specified. For future reference, we remark that because of (1.1) and (1.2) there exists a real number M_1 such that

$$|G(u)| < ((1 + 2\alpha)u^2)/2 + M_1 \quad \text{for all } u \in \mathbb{R}. \quad (1.7)$$

2. Preliminary lemmas. If $\int p(t)\sin(t) \, dt = 0$ then it is easily verified that $\{u'' + u = p(t), t \in [0, \pi], u(0) = u(\pi) = 0\}$ has a positive solution u_0. Therefore u_0 is a solution of (I). Thus it is sufficient to restrict ourselves to the case

$$\int p(t)\sin(t) \, dt < 0. \quad (2.1)$$

Lemma 1. The functional J satisfies $J(\lambda \sin(t)) \to -\infty$ as $|\lambda| \to \infty$.

Proof. That $J(\lambda \sin(t)) \to -\infty$ as $\lambda \to \infty$ follows immediately from (1.1) and (2.1). Because of (1.2) there exists a real number M such that

$$G(u) > ((1 + \alpha/2)u^2)/2 + M \quad \text{for all } u < 0. \quad (2.2)$$

Therefore, for $\lambda < 0$ we have

$$J(\lambda \sin(t)) > (\lambda^2/2) \int \cos^2(t) \, dt - (1 + \alpha/2)\left(\int \sin^2(t) \right)(\lambda^2)/2$$

$$- M\pi + \lambda \int p(t)\sin(t) \, dt. \quad (2.3)$$

Since $\alpha > 0$, it is clear that (2.3) implies that $J(\lambda \sin(t)) \to -\infty$, as $\lambda \to -\infty$, and the lemma is proved.

We let Y be the closed subspace of H generated by $\{\sin(2t), \sin(3t), \ldots \}$. It is readily verified that Y is the orthogonal complement of the subspace generated by $\sin(t)$. Observe that for $y \in Y$

$$4 \int y^2(t) \, dt < \int (y'(t))^2 \, dt. \quad (2.4)$$
Lemma 2. There exist real numbers $r_0 > 0$ and $\rho_0 > 0$ such that if $y \in Y$ and $\|y\| = r_0$ then
\[
J(\rho_0 \sin(t) + y(t)) > \sup_{\lambda \in \mathbb{R}} J(\lambda \sin(t)) + 1.
\]

Proof. Because of (1.4), given $\varepsilon > 0$ there exists $\rho > 0$ such that if $y \in Y$ and $\|y\| = 1$ then
\[
y(t) + \rho \sin(t) > 0 \quad \text{for all } t \in [\varepsilon, \pi - \varepsilon].
\]
Furthermore, for all $t \in [0, \pi]$, $y(t) + \rho \sin(t) > -c$. Consequently, for $b > 0$ and $y \in Y$ with $\|y\| = 1$,
\[
J(b(\rho \sin(t) + y(t))) > (b^2 \rho^2)/2 \int \cos^2(t) \, dt - (b^2 \rho^2)/2 \int \sin^2(t) \, dt
\]
\[
+ b^2/2 - b^2 \int y^2(t) \, dt + b \rho \int p(t) \sin(t) \, dt
\]
\[
+ b \int p(t)y(t) \, dt - \int_{\pi - \varepsilon}^{\varepsilon} G(b(\rho \sin(t) + y(t))) \, dt
\]
\[
- \int_{\pi - \varepsilon}^{\varepsilon} G(b(\rho \sin(t) + y(t))) \, dt.
\]
Combining this with (2.2) and (2.4) we have
\[
J(b(\rho \sin(t) + y(t))) > b^2(3/8) - b \rho \int p(t) \sin(t) \, dt
\]
\[
- 2(1 + (\alpha/2))b^2c^2 - 2eM.
\]
Thus, choosing ε small enough and b sufficiently large we see that $r_0 = b$ and $\rho_0 = \rho b$ satisfy the conditions of the lemma. Hence, Lemma 2 is proved.

From now on ρ_0 and r_0 denote two fixed real numbers satisfying Lemma 2. Because of (1.1) and (1.2), y is bounded on bounded sets. Therefore, there exists a real number c_1 such that if $y \in Y$ and $\|y\| = r_0$ then
\[
J(\rho_0 \sin(t) + y(t)) > c_1. \quad (2.5)
\]
We let $\lambda_0 > \rho_0$ be such that
\[
\max\{J(\lambda_0 \sin(t)), J(-\lambda_0 \sin(t))\} < c_1 - 1. \quad (2.6)
\]
We denote by Σ the family of all continuous functions $\sigma: [0, 1] \to S \equiv H - (\rho_0 \sin(t) + y(t); y \in Y$ and $\|y\| = r_0$) such that
(a) $\sigma(0) = -\lambda_0 \sin(t)$, $\sigma(1) = \lambda_0 \sin(t)$, and
(b) σ is homotopic on S to a map σ_0 through a homotopy which keeps end points fixed, where σ_0 is defined by $\sigma_0(s) = 2s\lambda_0 \sin(t) - \lambda_0 \sin(t)$.

An elementary topological argument shows that if $\sigma \in \Sigma$ then there exists $s \in [0, 1]$ and $y \in Y$ with $\sigma(s) = \rho_0 \sin(t) + y(t)$ and $\|y\| < r_0$.

Theorem 3. Let J, r_0, ρ_0, and Σ be as before. If every sequence $\{x_n\} \subset H$ such that $\nabla J(x_n) \to 0$ and $\{J(x_n)\}$ is bounded has a convergent subsequence, then J has a critical point u_0. Moreover
\[
J(u_0) = \inf_{\sigma \in \Sigma} \left(\max_{s \in [0,1]} J(\sigma(s)) \right).
\]
Since Theorem 3 is a slight variant of Theorem 1.2 of [5] we do not give a proof of it here.

3. Proof of Theorem A. Let \(\{x_n\} \subseteq H \) be a sequence such that \(\nabla J(x_n) \to 0 \) and \(\{J(x_n)\} \) is bounded. According to Theorem 3 and the remark following (1.6) we only need show that \(\{x_n\} \) has a convergent subsequence.

By (1.6), \(\nabla J(x) = x + g_1(x) \), where \(g_1: H \to H \) is continuous. Moreover, since the inclusion of \(H \) into \(L_2[0, \pi] \) is compact (see [1, Theorem 6.2]), \(g_1 \) is compact. In addition, \(g_1 \) maps weakly convergent sequences into convergent sequences.

Suppose \(\{x_n\} \) does not have a convergent subsequence. First we observe that \(\{x_n\} \) does not have a weakly convergent subsequence \(\{x^*_n\} \). For if it does, then \(\{g_1(x_n)\} \) is a convergent sequence; since \(x_n + g_1(x_n) \to 0 \) we have that \(\{x_n\} \) converges, a contradiction. Hence we can assume that \(\|x_n\| \) tends to \(+\infty \).

Let \(\{x_n/\|x_n\|\} \) be a subsequence of \(\{x_n/\|x_n\|\} \) converging weakly to a point \(x_0 \) in \(H \). For each \(v \in H \) we have
\[
\langle \nabla J(x_n), v \rangle /\|x_n\| = \left(\int x'_n v' - g(x_n) v + pv \right) /\|x_n\| \to 0.
\]
Therefore
\[
\int \left(x'_n v' - \left(g(x_n) /\|x_n\| \right) v \right) \to 0 \quad \text{as } j \to \infty. \tag{2.7}
\]
Because of (1.1) and (1.2) we have \(g(x) = f_1(x) + f_2(x) \) where \(f_1 \) is defined by \(f_1(x) = x \) for \(x > 0 \) and \(f_1(x) = (1 + \alpha)x \) for \(x < 0 \), and \(f_2 \) satisfies
\[
(f_2(x))/x \to 0 \quad \text{as } |x| \to +\infty. \tag{2.8}
\]
Thus, we have
\[
\int \left(g(x_n) /\|x_n\| \right) v = \int f_1(x_n/\|x_n\|) v + (f_2(x_n) v) /\|x_n\|.
\]
Because of (2.8) and (2.9) we obtain
\[
\int x'_n v' - f_1(x_n) v = 0 \quad \text{for all } v \in H.
\]
Therefore \(x_0 \) satisfies \(x'_0 + f_1(x_0) = 0 \), \(x(0) = x(\pi) = 0 \), which implies that \(x_0 = \xi \sin(t) \) for some \(\xi > 0 \). In case \(\xi = 0 \), by (1.7) we have that given \(\epsilon > 0 \) there exists \(j_0 \) such that
\[
\int G(x_n(t)) dt < \epsilon(1 + 2\alpha)\|x_n\|^2/2 + M_1\pi \quad \text{for all } j > j_0. \tag{2.9}
\]
From this inequality we have
\[
J(x_n) > \|x_n\|^2/2 - \epsilon(1 + 2\alpha)\|x_n\|^2/2 - M_1\|x_n\| - \|x_n\| \int (px_n) /\|x_n\|. \tag{2.10}
\]
When \(\epsilon(1 + 2\alpha) < 1 \) our assumption that \(\|x_n\| \to \infty \) contradicts the boundedness of \(\{\|J(x_n)\|\} \).
It remains to consider the case $\xi > 0$. Note that $(g(x_n)/\|x_n\|)$ converges in $L^2[0, \pi]$ to $f_1(x_0)$ and $g_1(x_n)/\|x_n\|$ converges to $g_1(x_0)$. We are assuming $\nabla J(x_n) = x_n + g_1(x_n) \to 0$, so $(x_n/\|x_n\|)$ converges to x_0. Since x_0 is positive on $(0, \pi)$ with $x'(0) > 0$ and $x'(\pi) < 0$, we have that there exists j_1 and a real number c such that $x_n(t) > c$ for all $t \in [0, \pi]$ and all $j > j_1$. Thus, as $j \to \infty$,
\[
\frac{(2J(x_n))/\|x_n\| = \int \left((x_n')^2 + 2px_n \right)/\|x_n\|} = 0,
\]
and
\[
\langle \nabla J(x_n), x_n/\|x_n\| \rangle = \int \left((x_n')^2 + px_n \right)/\|x_n\| \nabla J(x_n) + \int (g(x_n)x_n)/\|x_n\| \to 0.
\]
By the hypotheses on (x_n) we find $(\int p(x_n)/\|x_n\|) \to 0$. Then by (2.1), ξ cannot be positive. This final contradiction implies that (x_n) has a convergent subsequence and Theorem A is proved.

Remark. With obvious modifications of the method above one can prove results analogous to Theorem A for other type of boundary conditions. For example, it can be shown that

$$(II) \quad \begin{cases} u'' + g(u(t)) = p(t), & t \in [0, \pi], \\ u(0) = u(\pi) = 0 \end{cases}$$

has a solution if

$(1') g(u) = 0$ for $u > 0$.

$(11')$ for some $\alpha > 0, g(u)/u \to \alpha$ as $u \to -\infty$.

$(111') \int p(t) \, dt < 0$.

References

Departamento de Matemáticas, C. I. E. A. del I. P. N., Apartado Postal 14-740, México 14, D. F., México