Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Zeros of successive derivatives and iterated operators on analytic functions

Authors: J. K. Shaw and C. L. Prather
Journal: Proc. Amer. Math. Soc. 79 (1980), 225-232
MSC: Primary 30C15
MathSciNet review: 565344
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a function f analytic in the closed disc $ \vert z\vert \leqslant 1$, we study the behavior of zeros of the successive iterates $ ({\theta ^n}f)(z),n = 0,1,2, \ldots$, where $ \theta = {(z + \alpha )^{p + 1}}d/dz$. We find that such behavior closely parallels that for the ordinary derivative operator. Using change-of-variable methods, we obtain information on zeros of derivatives of functions analytic in half-planes.

References [Enhancements On Off] (What's this?)

  • [1] R. P. Boas, Zeros of successive derivatives of a function analytic at infinity, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (to appear). MR 580421 (81i:30011)
  • [2] J. D. Buckholtz, Successive derivatives of analytic functions, Indiana J. Math. 13 (1971), 83-88. MR 0333176 (48:11501)
  • [3] J. D. Buckholtz and J. L. Frank, Whittaker constants, Proc. London Math. Soc. 23 (1971), 348-370. MR 0296297 (45:5358)
  • [4] -, Whittaker constants. II, J. Approximation Theory 10 (2) (1974), 112-122. MR 0349997 (50:2490)
  • [5] J. L. Frank and J. K. Shaw, Abel-Gončarov polynomial expansions, J. Approximation Theory 10 (1) (1974), 6-22. MR 0346161 (49:10887)
  • [6] E. Hille, Analytic function theory, Ginn, Boston, Mass., 1962. MR 0201608 (34:1490)
  • [7] D. V. Widder, The inversion of the Laplace integral and the related moment problem, Trans. Amer. Math. Soc. 36 (1934), 107-200. MR 1501737

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C15

Retrieve articles in all journals with MSC: 30C15

Additional Information

Keywords: Zeros of derivatives, zero-free regions, differential operators
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society