The Hanf number of
Author:
Jouko Väänänen
Journal:
Proc. Amer. Math. Soc. 79 (1980), 294297
MSC:
Primary 03E35; Secondary 03C75
MathSciNet review:
565357
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A model of set theory is constructed in which the Hanf number of is below the first weakly compact cardinal. This answers a question of J. Silver.
 [1]
M.
A. Dickmann, Large infinitary languages, NorthHolland
Publishing Co., AmsterdamOxford; American Elsevier Publishing Co., Inc.,
New York, 1975. Model theory; Studies in Logic and the Foundations of
Mathematics, Vol. 83. MR 0539973
(58 #27450)
 [2]
Harvey
Friedman, One hundred and two problems in mathematical logic,
J. Symbolic Logic 40 (1975), 113–129. MR 0369018
(51 #5254)
 [3]
Thomas
Jech, Set theory, Academic Press [Harcourt Brace Jovanovich,
Publishers], New YorkLondon, 1978. Pure and Applied Mathematics. MR 506523
(80a:03062)
 [4]
A.
Kanamori and M.
Magidor, The evolution of large cardinal axioms in set theory,
Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977),
Lecture Notes in Math., vol. 669, Springer, Berlin, 1978,
pp. 99–275. MR 520190
(80b:03083)
 [5]
Kenneth
Kunen, Some applications of iterated ultrapowers in set
theory, Ann. Math. Logic 1 (1970), 179–227. MR 0277346
(43 #3080)
 [6]
Kenneth
Kunen, Saturated ideals, J. Symbolic Logic 43
(1978), no. 1, 65–76. MR 495118
(80a:03068), http://dx.doi.org/10.2307/2271949
 [7]
Menachem
Magidor, How large is the first strongly compact cardinal? or A
study on identity crises, Ann. Math. Logic 10 (1976),
no. 1, 33–57. MR 0429566
(55 #2578)
 [8]
Telis
K. Menas, Consistency results concerning
supercompactness, Trans. Amer. Math. Soc.
223 (1976),
61–91. MR
0540771 (58 #27488), http://dx.doi.org/10.1090/S00029947197605407718
 [9]
Jack
H. Silver, Some applications of model theory in set theory,
Ann. Math. Logic 3 (1971), no. 1, 45–110. MR 0409188
(53 #12950)
 [1]
 M. Dickmann, Large infinitary languages, NorthHolland, Amsterdam, 1975. MR 0539973 (58:27450)
 [2]
 H. Friedman, One hundred and two problems in mathematical logic, J. Symbolic. Logic 40 (1975), 113129. MR 0369018 (51:5254)
 [3]
 T. Jech, Set theory, Academic Press, New York, 1978. MR 506523 (80a:03062)
 [4]
 A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, Higher Set Theory, Lecture Notes in Math., vol. 669, SpringerVerlag, Berlin and New York, 1978, pp. 99275. MR 520190 (80b:03083)
 [5]
 K. Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179227. MR 0277346 (43:3080)
 [6]
 , Saturated ideals, J. Symbolic. Logic 43(1) (1978), 6576. MR 495118 (80a:03068)
 [7]
 M. Magidor, How large is the first strongly compact cardinal? or: A study on identity crises, Ann. Math. Logic 10 (1976), 3358. MR 0429566 (55:2578)
 [8]
 T. Menas, Consistency results concerning supercompactness, Trans. Amer. Math. Soc. 223 (1976), 6191. MR 0540771 (58:27488)
 [9]
 J. Silver, Some applications of model theory in set theory, Ann. Math. Logic 3 (1971), 45110. MR 0409188 (53:12950)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
03E35,
03C75
Retrieve articles in all journals
with MSC:
03E35,
03C75
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198005653577
PII:
S 00029939(1980)05653577
Article copyright:
© Copyright 1980
American Mathematical Society
