Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A characterization of normal operators using the Hilbert-Schmidt class

Author: Ritsuo Nakamoto
Journal: Proc. Amer. Math. Soc. 79 (1980), 343-344
MSC: Primary 47B15; Secondary 47B10
MathSciNet review: 565369
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A bounded linear operator N on a Hilbert space H is normal if and only if $ \Vert NX - XN\Vert _2 = \Vert N^* X - X N^*\Vert _2$ for every X in the Hilbert-Schmidt class.

References [Enhancements On Off] (What's this?)

  • [1] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 0208368 (34:8178)
  • [2] H. Kamowitz, On operators whose spectrum lies on a circle or a line, Pacific J. Math. 20 (1967), 65-68. MR 0203471 (34:3322)
  • [3] R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Math. und ihrer Grenzgebiete, Springer-Verlag, Berlin and New York, 1960. MR 0119112 (22:9878)
  • [4] G. Weiss The Fuglede commutativity theorem modulo operator ideals (to appear). MR 619994 (82k:47037)
  • [5] -, Fuglede's commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II (to appear). MR 613042 (83g:47041)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B15, 47B10

Retrieve articles in all journals with MSC: 47B15, 47B10

Additional Information

Keywords: Hilbert-Schmidt class, normal operator
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society