Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some properties of the signature of complete intersections


Author: A. Libgober
Journal: Proc. Amer. Math. Soc. 79 (1980), 373-375
MSC: Primary 14B05; Secondary 14M10, 57R19
DOI: https://doi.org/10.1090/S0002-9939-1980-0567975-9
MathSciNet review: 567975
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that: (1) The signature of complete intersections is a monotone function of degrees of defining equations.

(2) The signature of n-dimensional complete intersection (except for $ {\mathbf{C}}{{\mathbf{P}}^n}$) is positive for $ n \equiv 0 \pmod 4$ and is negative for $ n \equiv 2 \pmod 4$.


References [Enhancements On Off] (What's this?)

  • [1] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, Berlin and New York, 1966. MR 0202713 (34:2573)
  • [2] J. Wood, A connected sum decomposition for complete intersections, Proc. Sympos. Pure Math., vol. 32, part 2, Amer. Math. Soc., Providence, R. I., 1978, pp. 191-193. MR 520536 (80g:57050)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14B05, 14M10, 57R19

Retrieve articles in all journals with MSC: 14B05, 14M10, 57R19


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0567975-9
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society