Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Trace-class norm multipliers


Author: Roshdi Khalil
Journal: Proc. Amer. Math. Soc. 79 (1980), 379-387
MSC: Primary 47D25; Secondary 46E30, 47B10, 47B38
DOI: https://doi.org/10.1090/S0002-9939-1980-0567977-2
MathSciNet review: 567977
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the pointwise multipliers of the space $ {L^2}(X,\nu )\hat \otimes {L^2}(Y,\mu )$ for different measure spaces $ (X,\nu )$ and $ (Y,\mu )$. First we consider the case where X and Y are finite sets, then we use this to study the multipliers of $ {L^2}(I,\nu )\hat \otimes {L^2}(I,\nu )$, where I is the unit interval and $ \nu $ any Borel measure on I.


References [Enhancements On Off] (What's this?)

  • [1] I. Amemiya and K. Shiga, On tensor product of Banach spaces, Kōdai Math. Sem. Rep. 9 (1957), 161-176. MR 0105020 (21:3766)
  • [2] G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), 613-639. MR 0493490 (58:12490)
  • [3] P. Billingsley, Ergodic theory and information, Wiley, New York, 1965. MR 0192027 (33:254)
  • [4] J. Diestel and J. R. Uhl, Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R. I., 1977. MR 0453964 (56:12216)
  • [5] R. Khalil, Ph.D. thesis, McGill University, 1978.
  • [6] J. R. Ringrose, Compact non-self adjoint operators, Van Nostrand Reinhold, London, 1971.
  • [7] R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin and New York, 1960. MR 0119112 (22:9878)
  • [8] J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D25, 46E30, 47B10, 47B38

Retrieve articles in all journals with MSC: 47D25, 46E30, 47B10, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0567977-2
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society