AN INTEGRODIFFERENTIAL EQUATION

T. A. BURTON

Abstract. The vector equation

\[x'(t) = A(t)x(t) + \int_0^t C(t, s)D(x(s))x(s) \, ds + F(t) \]

is considered in which \(A \) is not necessarily a stable matrix, but \(A(t) + G(t, t)D(0) \) is stable where \(G \) is an antiderivative of \(C \) with respect to \(t \). Stability and boundedness results are then obtained. We also point out that boundedness results of Levin for the scalar equation \(u'(t) = - \int_0^t a(t-s)g(u(s)) \, ds \) can be extended to a vector system \(x'(t) = - \int_0^t H(t, s)x(s) \, ds \).

1. Introduction. We consider the equation

\[x'(t) = A(t)x(t) + \int_0^t C(t, s)D(x(s))x(s) \, ds + F(t) \]

in which \(A, C, \) and \(D \) are \(n \times n \) matrices, while \(x \) and \(F \) are \(n \)-vectors. In particular, \(A \) and \(F \) are continuous for \(0 < t < \infty \), \(C \) is continuous for \(0 < s < t < \infty \) and \(D \) is defined in a neighborhood of zero and continuous at \(x = 0 \).

Let \(G(t, s) \) be an \(n \times n \) matrix with

\[\frac{\partial G(t, s)}{\partial t} = C(t, s) \]

and suppose that

\[Q \overset{\text{def}}{=} A(t) - G(t, t)D(0) \]

commutes with its integral, while

\[e^{\int_0^t Q(s) \, ds} < Me^{-\alpha(t-u)}, \quad 0 < u < t, \]

for some positive constants \(\alpha \) and \(M \). For example, (3) holds if \(A \) is constant and \(C \) is of convolution type, as \(Q \) would then be constant. Then (4) would hold if, in addition, the characteristic roots of \(Q \) all have negative real parts.

Under these conditions we obtain relations implying various stability results for (1). These results include cases in which \(A \) is constant with positive characteristic roots.

If \(D(x)x \) is locally Lipschitz and defined for all \(x \in \mathbb{R}^n \), then solutions of (1) are unique. If, in addition, a solution of (1) remains bounded, then it may be continued to \([0, \infty)\). However, our purpose here is not to examine existence and uniqueness, but only stability.

We assume throughout that any solution which remains in the domain of definition of \(D \) and which remains bounded may be continued to \(t = \infty \).

Received by the editors April 26, 1979.

AMS (MOS) subject classifications (1970). Primary 45D05; Secondary 34K20.

Key words and phrases. Integrodifferential equations, stability, Liapunov functional.

© 1980 American Mathematical Society
0002-9939/80/0000-0310/$02.75

393
2. Stability and boundedness. We first obtain an alternate form for (1) and an inequality for $|x|$.

Lemma 1. If G satisfies (2), then (1) may be written as

$$x'(t) = \left[A(t) - G(t, t)D(x(t)) \right] x(t) + \frac{d}{dt} f'G(t, s)D(x(s))x(s) \, ds + F(t).$$

\hspace{1cm} (5)

Lemma 2. If G satisfies (2) while the matrix Q defined by (3) commutes with its integral, then the solution $x(t)$ of (1) with $x(0) = x_0$ satisfies

$$|x(t)| < |x_0|Me^{-\alpha t} + \int_0^t Me^{-\alpha(t-s)}|G(u, u)(D(0) - D(x(u)))x(u)| \, du$$

$$+ \int_0^t |G(t, s)D(x(s))x(s)| \, ds + \int_0^t Me^{-\alpha(t-s)}|F(u)| \, du$$

$$+ \int_0^t \int_s^t |Q(u)|Me^{-\alpha(t-s)}|G(u, s)D(x(s))x(s)| \, du \, ds.$$

\hspace{1cm} (6)

Proof. Subtract Qx from both sides of (5), multiply by $e^{-\int_0^t Q(s) \, ds}$, and group terms to obtain

$$\left(e^{-\int_0^t Q(s) \, ds}x(t) \right)' = e^{-\int_0^t Q(s) \, ds}\left\{ \left[A(t) - G(t, t)D(x(t)) - Q \right] x(t) + \frac{d}{dt} f'G(t, s)D(x(s))x(s) \, ds \right\}.$$

Using the definition of Q, integrating both sides from 0 to t, integrating the resulting next to last term by parts and interchanging the order of integration yields

$$e^{-\int_0^t Q(s) \, ds}x(t) = x_0 + \int_0^t e^{-\int_0^s Q(u) \, du}\left[G(u, u)(D(0) - D(x(u))) \right] x(u) \, du$$

$$+ \int_0^t e^{-\int_0^s Q(u) \, du} \int_0^s G(t, s)D(x(s))x(s) \, ds$$

$$+ \int_0^t \int_s^t Q(u) e^{-\int_0^s Q(v) \, dv} G(u, s) du D(x(s))x(s) \, ds$$

$$+ \int_0^t e^{-\int_0^s Q(u) \, du} F(u) \, du.$$

Now left multiply both sides by $e^{\int_0^t Q(s) \, ds}$, take norms and apply (4) to obtain (6).

Remark 1. Inequality (6) is the result from which stability conclusions may be drawn. We illustrate this by supposing that G decreases exponentially.

Lemma 3. Let the conditions of Lemma 2 hold and suppose there are positive constants J and β with $|G(t, s)| < Je^{-\beta(s-t)}$ for $0 < s < t$. Suppose also that $\beta > \alpha$ and Q is constant. If $P > |2>(0)|$, then for each $\varepsilon > 0$ there exists $\delta > 0$ such that any solution $x(t)$ of (1) which satisfies $|x(t)| < \delta$ on $[0, \infty)$ also satisfies

$$|x(t)|e^{\alpha t} < M|x(0)| + \int_0^t \left\{ Me|G(u, u)| + \left[|Q|MJP/ (\beta - \alpha) \right]

\hspace{1cm} + \left[JP - (|Q|MJP/ (\beta - \alpha)) \right] e^{(\alpha - \beta)(t-s)} \right\} |x(u)|e^{\alpha u} \, du$$

$$+ \int_0^t Me^{\alpha u}|F(u)| \, du.$$

\hspace{1cm} (7)
AN INTEGRODIFFERENTIAL EQUATION

Proof. Multiply (6) by e^{at} and note that by continuity of D at $x = 0$, given $e > 0$ and $P > |D(0)|$ there exists $\delta > 0$ with $|D(0) - D(x)| < e$ and $|D(x)| < P$ if $|x| < \delta$. This information in (6) yields

$$|x(t)|e^{at} < M|x_0| + \int_0^t M e^{au}|G(u, u)|e^{au}|x(u)| du$$

$$+ \int_0^t M e^{au}|F(u)| du + \int_0^t J e^{(\alpha - \beta)(t - s)}|x(s)| e^{au} ds$$

$$+ \int_0^t \int_s^t Q |M| e^{(\alpha - \beta)(u - s)}|x(s)| e^{au} ds du.$$

Integration in the last term now yields (7).

When $G(s, s)$ is constant and $F(t) \equiv 0$, then (7) has the form

$$f(t) < a + \int_0^t \{be^{-\gamma(t-u)} + c\} f(u) du$$

with $a > 0, c > 0, \gamma > 0$ and $f > 0$.

Theorem 1. Let the conditions of Lemma 3 hold with $F(t) = 0$ and $\beta - \alpha < |Q|M$. If

$$\int_0^t \{Me|G(u, u)| + [Q|MJ|/(\beta - \alpha)]\} du < \alpha \varepsilon < \alpha t$$

for $t > 0$ and for some $\varepsilon > 0$, then the solution $x(t)$ of (1) with $x(0) = x_0$ tends to zero exponentially for $|x_0|$ small enough.

Theorem 1 follows from Gronwall’s inequality. It is weak as we need $|Q|MJ|/(\beta - \alpha)$ small and $|QM|/(\beta - \alpha) > 1$. Nevertheless, the possibility of $\beta - \alpha < |Q|M$ should not be neglected.

Theorem 2. Let the conditions of Lemma 3 hold and let $\beta - \alpha > |Q|M$. If A and $G(t, t)$ are constant and if $J < a\beta/(\alpha Q|M + \alpha)$, then every solution of

$$y'(t) = Ay(t) + \int_0^t C(t, s)y(s) ds, \quad y(0) = y_0,$$

(1')

tends to zero exponentially as $t \to \infty$.

Proof. A review of the previous work will show that in the linear case we may take $\varepsilon = 0$ as $|D(0) - D(x)| = 0$ and we may take $P = 1$ and $\delta = \infty$. Our inequality (7) will become

$$|y(t)|e^{at} < |y(0)|M + \int_0^t \{[Q|MJ|/(\beta - \alpha)]$$

$$+J[1 - (\alpha Q|M/(\beta - \alpha))]^{(\alpha - \beta)(t-u)}\}|y(u)|e^{au} du$$

which we denote by (8) with all constants positive.

As $b > 0$, $f(t)$ is bounded above by the maximal solution of

$$g(t) = a + \int_0^t \{be^{-\gamma(t-u)} + c\} g(u) du$$

which is equivalent to

$$g'' + (\gamma - b - c)g' - \gamma cg = 0$$

(9)
with \(g(0) = a \) and \(g'(0) = a(b + c) \). The largest characteristic root is

\[
\lambda = \left[b + c - \gamma + \left((\gamma - b - c)^2 + 4 \gamma c \right)^{1/2} \right] / 2
\]

where \(b + c = J \), \(\gamma = \beta - \alpha \) and \(c = |Q|M J / (\beta - \alpha) \).

We recall from Lemma 3 that we need \(|y(t)| < \delta \) on \([0, \infty) \) in order to maintain our inequalities. If we can make \(\lambda < \alpha \) then for sufficiently small \(|y_0| \) we will have \(|y(t)| < \delta \). At the same time, we will obtain the result that \(y(t) \to 0 \) exponentially for \(|y_0| \) small.

Now \(\lambda < \alpha \) if

\[
J + (\alpha - \beta) + \left((\alpha + J - \beta)^2 + 4 |Q|M J \right)^{1/2} < 2\alpha,
\]

which is satisfied if

\[
J < \alpha \beta / [|Q|M + \alpha].
\]

Corollary. Let the conditions of Lemma 3 hold and let \(\beta - \alpha > |Q|M \). If \(A \) is constant and if \(J < \alpha \beta / [|Q|M + \alpha] \), then every solution of

\[
x'(t) = Ax(t) + \int_0^t C(t - s)x(s) \, ds + F(t), \quad x(0) = x_0, \quad (1)''
\]

satisfies

\[
x(t) = Z(t)x(0) + \int_0^t Z(t - s)F(s) \, ds
\]

where \(Z(t) \) tends to zero exponentially.

Proof. We have \(C(t, s) = C(t - s) \) so \(G(t, t) \) is constant. As \(A \) is also constant, according to [1] the solutions of \((1)'' \) may be expressed as indicated where \(Z(t) \) is the \(n \times n \) matrix whose columns are solutions of \((1)' \) with \(Z(0) = I \). By Theorem 2 the solutions of \((1)' \) tend to zero exponentially.

Example 1. Consider the scalar equation

\[
x'(t) = Ax(t) + \int_0^t -ke^{-\beta(t-s)} [\beta \cos(t - s) + \sin(t - s)] x(s) \, ds.
\]

Then \(G(t, s) = ke^{-\beta(t-s)} \cos(t - s) \) so that \(G(t, t) = k, J = k, Q = A - k \) and \(e^{Qt} = e^{(A-k)t} \). Thus, \(M = 1 \) and we require \(A - k = -\alpha < 0 \).

Theorem 2 requires \(J < \alpha \beta / [|Q|M + \alpha] \) and \(\beta - \alpha > |Q|M \). These are satisfied if \(k < (k - A)\beta / (|k - A| + |k - A|) \) or \(k < \beta / 2 \) and if \(\beta + A - k > k - A \) or \(\beta / 2 > k - A \).

Remark 2. Let us examine Theorem 2 once more. If \(F(t) \equiv 0 \), if the conditions of Lemma 3 hold and if \(A \) and \(G(t, t) \) are constant, then we see that \(\epsilon \) can be made arbitrarily small and \(P \) can be made as close to 1 as we please. Thus, \(\beta - \alpha > |Q|M \) and \(J < \alpha \beta / [|Q|M + \alpha] \) should also be a sufficient condition for solutions of \((1) \), starting sufficiently near zero, to approach zero exponentially.

Remark 3. In the convolution case, Grossman and Miller [3, p. 463] ask that the resolvent \(R(t) \) satisfy \(\int_0^\infty |R(t)| \, dt < \infty \) and \(\int_0^\infty |R'(t)| \, dt < \infty \) in order to obtain perturbation results. It is shown in [3, p. 552] that the columns of \(R(t) \) are solutions of \((1) \) in case \(F(t) = 0 \) and \(C(t, s) = C(t - s) \). Thus, under the conditions of the corollary to Theorem 2 with \(F(t) = 0 \) we see that \(x(t) \) tends to zero exponentially.
If, in addition, $|C(t-s)| < M e^{-B(t-s)}$, a calculation will show that this implies $\int_0^\infty |x'(t)| \, dt < \infty$. Thus, under the above conditions we have

$$\int_0^\infty \left[|R(t)| + |R'(t)| \right] \, dt < \infty.$$

Most authors require A to be a stable matrix and treat the integral in (1) as a perturbation in order to obtain stability results for (1). There are notable exceptions.

Grossman and Miller [3, p. 552 and 558] show that in the linear convolution case the resolvent $R(t)$ satisfying $R'(t) = AR(t) + \int_0^t C(t-s)R(s) \, ds$, $R(0) = I$ with $\int_0^\infty |C(t)| \, dt < \infty$ will satisfy $\int_0^\infty |R(t)| \, dt < \infty$ if and only if

$$\det (s - A - \hat{C}(s)) \neq 0 \quad \text{for } \Re s > 0$$

where $\hat{C}(s)$ is the Laplace transform of C.

Grimmer and Seifert [2, p. 160] give a type of process that may transform (1) to an equation with A a stable matrix.

Perhaps the very nicest result of all along the lines of A being not stable is a very special case dealt with by Levin [4] who considers the scalar equation

$$u'(t) = -\int_0^t a(t-s)g(u(s)) \, ds \quad (11)$$

and proves

Theorem (Levin). Let $a(t)$ and $g(u)$ satisfy

(i) $a(t) \in C[0, \infty)$, $(-1)^k a^{(k)}(t) > 0$ for $0 < t < \infty$ and $k = 0, 1, 2, 3$, and $g(u) \in C(-\infty, \infty)$, $ug(u) > 0$ if $u \neq 0$,

(ii) $G(u) = \int_0^u g(s) \, ds \to \infty$ as $|u| \to \infty$.

If $a(t) \equiv a(0)$ and if $u(t)$ is any solution of (11) on $[0, \infty)$, then $\lim_{t \to \infty} u^{(j)}(t) = 0$, $j = 0, 1, 2$.

The result is special in that it is scalar, the kernel is of convolution type, the right side does not admit a term Au with A being possibly positive and the derivative conditions on $a(t)$ are severe indeed. On the other hand, the restrictions on g are minimal and the proof involves perhaps the most clever construction of a Lyapunov functional to be found in the literature. In fact, it seems worthwhile to point out just how that Lyapunov functional can be extended to yield boundedness of a vector system. The fact that all scalars are symmetric and commute restricts the general statement.

Theorem 3. In the equation

$$x'(t) = -\int_0^t H(t, s)x(s) \, ds \quad (12)$$

we suppose that H is an $n \times n$ matrix of functions continuous for $0 < s < t < \infty$, $H^T = H$, $H(t, 0)$ and $\partial H(t, s)/\partial s$ are continuous and positive semidefinite, while $(d/dt)H(t, 0)$ and $\partial^2 H(t, s)/\partial t \partial s$ are continuous and negative semidefinite. Then all solutions of (12) are bounded.
PROOF. Define a functional
\[V(t, x(\cdot)) = x^T(t)x(t) + \int_t^t x^T(s) \, ds \, H(t, 0) \int_0^t x(s) \, ds \]
\[+ \int_0^t \left\{ \left[\int_s^t x^T(q) \, dq \right] \left[\frac{\partial H(t, s)}{\partial s} \right] \int_s^t x(q) \, dq \right\} \, ds \]
and differentiate \(V \) along a solution of (12) to obtain
\[V'_{(12)}(t, x(\cdot)) = -\int_t^t x^T(s)H^T(t, s)x(s) \, ds \]
\[- \int_0^t x^T(t)H(t, s)x(s) \, ds + x^T(t)H(t, 0) \int_0^t x(s) \, ds \]
\[+ \int_0^t x^T(s) \left\{ \left[\frac{d}{dt}H(t, s) \right] \int_s^t x(s) \, ds + H(t, 0)x(t) \right\} \]
\[+ \int_0^t \left\{ x^T(t)\left[\frac{\partial H(t, s)}{\partial s} \right] \int_s^t x(q) \, dq \right\} \, ds \]
\[+ \int_0^t \left[\int_s^t x^T(q) \, dq \right] \left[\frac{\partial^2 H(t, s)}{\partial t \partial s} \right] \int_s^t x(q) \, dq \]
\[+ \left[\frac{\partial H(t, s)}{\partial s} \right] x(t) \right\} \, ds. \]

We integrate the last term in the last integral by parts. If we write it as \(\int_0^t u \, dv \)
then \(u = \int_s^t x^T(q) \, dq \) and \(dv = \left[\frac{\partial H(t, s)}{\partial s} \right] x(t) \), so that \(v = H(t, s)x(t) - H(t, 0)x(t) \) and \(du = -x^T(t) \).

Likewise
\[\int_0^t x^T(t)\left[\frac{\partial H(t, s)}{\partial s} \right] \int_s^t x(q) \, dq \, ds = \int_0^t do \, u \]
may be integrated by parts. In this case, \(dv = x^T(t)\frac{\partial H(t, s)}{\partial s} \) and \(u = \int_s^t x(q) \, dq \)
so that \(v = x^T(t)H(t, s) - x^T(t)H(t, 0) \) and \(du = -x(s) \).

We then have
\[V'_{(12)}(t, x(\cdot)) = -2 \int_0^t x^T(t)H(t, s)x(s) \, ds + x^T(t)H(t, 0) \int_0^t x(s) \, ds \]
\[+ \int_0^t x^T(s) \left[\frac{dH(t, 0)}{dt} \right] \int_0^t x(s) \, ds \]
\[+ \int_0^t x^T(s)H(t, 0)x(t) - x^T(t)H(t, 0) \int_0^t x(q) \, dq \]
\[+ x^T(t)H(t, 0) \int_0^t x(q) \, dq \]
\[+ \int_0^t \left[x^T(t)H(t, s) - x^T(t)H(t, 0) \right] x(s) \, ds \]
\[+ \int_0^t \left[\int_s^t x^T(q) \, dq \right] \left[\frac{\partial^2 H(t, s)}{\partial t \partial s} \right] \int_s^t x(q) \, dq \, ds \]
\[+ \int_0^t x^T(s) \left[H(t, s)x(t) - H(t, 0)x(t) \right] \, ds \]
\[= \int_0^t x^T(s) \left[\frac{dH(t, 0)}{dt} \right] \int_0^t x(s) \, ds \]
\[+ \int_0^t \left[\int_s^t x^T(q) \, dq \right] \left[\frac{\partial^2 H(t, s)}{\partial t \partial s} \right] \int_s^t x(q) \, dq \, ds < 0. \]
As $V(t, x(\cdot)) > x^T(t)x(t)$ and $V'_{(12)} < 0$, all solutions are bounded.

Example 2. If

$$H(t, s) = \begin{pmatrix} \frac{c_1}{(t - s + 1)} & \exp - (2t - s) \\ \exp - (2t - s) & \frac{c_2}{(t - s + 2)^2} \end{pmatrix}$$

where $c_1 > 0$, $c_2 > 0$, and

$$c_1c_2/(t - s + 1)(t - s + 2)^4 > 4e^{-2(2t-s)}$$

for $0 < s < t < \infty$, then the conditions of Theorem 3 hold.

Added in proof. J. J. Levin has a scalar version of Theorem 3 in J. Differential Equations 4 (1968), 176–186.

References