ON THE REFLEXIVITY OF C₀(N) CONTRACTIONS

PEI YUAN WU

Abstract. Let T be a C₀(N) contraction on a separable Hilbert space and let
J = S(φ₁) ⊕ S(φ₂) ⊕ ⋯ ⊕ S(φₖ) be its Jordan model, where φ₁, φ₂, ⋯, φₖ are
inner functions satisfying φⱼ|φⱼ₋₁ = ₁ for j = 2, 3, ⋯, k, and S(φⱼ) denotes the com-
pression of the shift on H² ⊗ φⱼH², j = 1, 2, ⋯, k. In this note we show that T is
reflexive if and only if S(φ₁/φ₂) is.

In this note we only consider bounded linear operators defined on complex,
separable Hilbert spaces. For each operator T, let {T}', {T}'' and Alg T denote
the commutant, double commutant and the weakly closed algebra generated by T
and I, respectively. Let Lat T denote the lattice of invariant subspaces of T and
Alg Lat T denote the (weakly closed) algebra of operators which leave all the
subspaces in Lat T invariant. Recall that T is reflexive if and only if Alg Lat T =
Alg T. In [1] Deddens and Fillmore characterized reflexive operators on finite-di-
mensional spaces in terms of their Jordan canonical forms. Now we generalize their
result to C₀(N) contractions. More specifically, we prove the following

Theorem 1. If T is a C₀(N) contraction and J = S(φ₁) ⊕ S(φ₂) ⊕ ⋯ ⊕ S(φₖ) is
its Jordan model, then T is reflexive if and only if S(φ₁/φ₂) is.

A contraction T (||T|| < 1) on a Hilbert space is of class C₀(N) for some integer
N > 1 if there exists an inner function φ such that φ(T) = 0 and the defect indices
of T, dₜ = rank(I - T*T)¹/² and dᵣ = rank(I - TT*)¹/², are both equal to some
M < N. A C₀(N) contraction is unitarily equivalent to the operator T defined on
H = Hᴺ ⊗ ΘₚHᴺ by Tƒ = P(eₙƒ) for ƒ ∈ H, where Hᴺ denotes the standard
Hardy space of Cᴺ-valued functions defined on the unit circle, Θₚ is the character-
stic function of T, and P denotes the (orthogonal) projection from Hᴺ onto H (cf.
[5, Chapter VI]). Two operators T₁, T₂ are quasi-similar if there exist one-to-one
operators X and Y with dense ranges (called quasi-affinities) such that XT₁ = T₂X
and YT₂ = T₁Y. A C₀(N) contraction is quasi-similar to a uniquely determined
Jordan operator (called its Jordan model) J = S(φ₁) ⊕ S(φ₂) ⊕ ⋯ ⊕ S(φₖ),
where φ₁, φ₂, ⋯, φₖ are inner functions satisfying φⱼ|φⱼ₋₁ = ₁ for j = 2, 3, ⋯, k, and
S(φⱼ) denotes the operator defined on H² ⊗ φⱼH² by S(φⱼ)f = Pⱼ(eᵣƒ) for ƒ ∈ H²
⊗ φⱼH², Pⱼ being the (orthogonal) projection from H² onto H² ⊗ φⱼH², j =
1, 2, ⋯, k (cf. [4]). For ξ and η in H∞, ξ \ η = 1 denotes that ξ and η have no
nontrivial common inner divisor.

Received by the editors February 6, 1979 and, in revised form, July 11, 1979.
Key words and phrases. C₀(N) contraction, reflexive operator, Jordan model for C₀(N) contractions,
quasi-similarity.

This research was partially supported by National Science Council of Taiwan, Republic of China.

© 1980 American Mathematical Society
0002-9939/80/0000-0312/$02.25

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We start the proof of Theorem 1 by showing that for $C_0(N)$ contractions, the property of reflexivity is preserved under quasi-similarities. This generalizes Corollary 4.5 in [7].

Theorem 2. Let T_1 and T_2 be $C_0(N)$ contractions on H_1 and H_2, respectively. Assume that T_1 is quasi-similar to T_2. Then T_1 is reflexive if and only if T_2 is.

Proof. We may assume that T_1 and T_2 are defined on $H_1 = H_{\Omega_1} \oplus \Theta_1 H_{\Lambda_1}$ and $H_2 = H_{\Omega_2} \oplus \Theta_2 H_{\Lambda_2}$ by $T_1 f = P_1(e^{\lambda_1} f)$ and $T_2 g = P_2(e^{\lambda_2} g)$, respectively, where $f \in H_1$ and $g \in H_2$. Since T_1 and T_2 are quasi-similar to each other, there exist bounded analytic functions Φ and Ψ such that $\Phi \Theta_1 = \Theta_2 \Psi$ and $(\det \Phi)(\det \Psi) \wedge (\det \Theta_1)(\det \Theta_2) = 1$ (cf. [3] and [2]). Let Φ' denote the algebraic adjoint of Φ. It can be easily verified that the operators $X: H_1 \to H_2$ and $Y: H_2 \to H_1$ defined by $Xf = P_2(\Phi f)$ for $f \in H_1$ and $Yg = P_1((\det \Phi')\Phi'g)$ for $g \in H_2$ implement the quasi-affinities intertwining T_1 and T_2 (cf. [2, Theorem 2]). Moreover, we have $YX = (\eta(T_1)$ and $XY = (\eta(T_2)$, where $\eta = (\det \Phi)(\det \Psi)$. Let m_1 and m_2 denote the minimal functions of T_1 and T_2, respectively. From the quasi-similarity of T_1 and T_2 we have $m_1 = m_2$.

Assume that T_1 is reflexive. Let $S \in \text{Alg Lat } T_2$ and $K \in \text{Lat } T_1$. Then $YSXK \subseteq \overline{Y \eta(T_1)K} = \eta(T_1)K$. $\eta \wedge (\det \Theta_1) = 1$ implies that $\eta \wedge m_1 = 1$ (cf. [5, Theorem VI.5.2]). In particular, η and the minimal function of $T_1|K$ have no nontrivial common inner divisor. Thus $\eta(T_1|K)$ is a quasi-affinity (cf. [7, Theorem 2.3]) and therefore $\overline{\eta(T_1|K)K} = \eta(T_1|K)K = K$. We have $YSXK \subseteq K$ for any $K \in \text{Lat } T_1$, which shows that $YSX \in \text{Alg Lat } T_1 = \text{Alg } T_1$. Hence $YSX = v(T_1)^{-1}u(T_1)$ for some $u, v \in H^\infty$, where $v \wedge m_1 = 1$ (cf. [7, Theorem 3.2]). So $v(T_1)YSX = u(T_1)$ and we have $\eta(T_2)v(T_2)S\eta(T_2) = XYv(T_2)SXY = X(v(T_1)YSX)Y = Xv(T_1)Y = u(T_2)XY = u(T_2)$. Since as above $\eta(T_2)$ is a quasi-affinity, this implies that $\eta(T_2)v(T_2)S = u(T_2)$. Note that $\langle \nu \rangle \wedge m_2 = 1$. We obtain $S = (\eta(T_2)^{-1}v(T_2) \in \text{Alg } T_2$. This shows that T_2 is reflexive, completing the proof.

As a by-product of the preceding proof, we have the following

Theorem 3. Let T_1 and T_2 be $C_0(N)$ contractions on H_1 and H_2, respectively. If T_1 is quasi-similar to T_2, then $\text{Lat } T_1 \cong \text{Lat } T_2$.

Proof. Let $X: H_1 \to H_2$ and $Y: H_2 \to H_1$ be the intertwining quasi-affinities given in the proof of Theorem 2. For $K_1 \in \text{Lat } T_1$ and $K_2 \in \text{Lat } T_2$ consider the mappings $K_1 \to \overline{XK_1}$ and $K_2 \to \overline{YK_2}$. As before we have

$$\overline{Y \eta(T_1)K_1} = \eta(T_1)K_1 = \overline{\eta(T_1|K_1)K_1} = K_1.$$

Similarly, $\overline{X \eta(T_1)K_2} = K_2$. We infer that these mappings implement the lattice isomorphisms between $\text{Lat } T_1$ and $\text{Lat } T_2$ and hence $\text{Lat } T_1 \cong \text{Lat } T_2$.

As a consequence of Theorem 2, to prove Theorem 1 it suffices to consider Jordan operators. The next lemma will be needed in the proof of the necessity part.

Lemma 4. Let T be an operator on a Hilbert space H. Let $S \in \text{Alg Lat } T \cap \{T\}'$ and $T_1 = T|S^H$. Assume that $\text{Alg Lat } T_1 \cap \{T_1\}' = \text{Alg } T_1$. If T is reflexive, so is T_1.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Let \(S_1 \in \text{Alg Lat } T_1 \). Consider \(S_1S \) as an operator on \(H \). For any \(K \in \text{Lat } T, SK \subseteq K \cap S^2H \). Since \(K \cap S^2H \in \text{Lat } T_1 \), we have \(S_1SK \subseteq S_1(K \cap S^2H) \subseteq K \cap S^2H \subseteq K \). This shows that \(S_1S \in \text{Alg Lat } T = \text{Alg } T \). Hence \(S_1TS = S_1ST = TS_1S \). It follows that \(S_1T_1 = T_1S_1 \) on \(S^2H \), that is, \(S_1 \in \langle T_1 \rangle' \). We conclude that \(S_1 \in \text{Alg Lat } T_1 \cap \langle T_1 \rangle' = \text{Alg } T_1 \) and hence \(T_1 \) is reflexive.

To prove the sufficiency part, we essentially follow the same line of arguments as given by Deddens and Fillmore [1] for reflexive linear transformations. The next two lemmas are analogous to part of Theorem 2 and its Corollary in [1], respectively.

Lemma 5. Let \(T = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k) \) be a Jordan operator defined on \(H = (H_2 \oplus \varphi_1H^2) \oplus \cdots \oplus (H_2 \oplus \varphi_kH^2) \) and let \(\psi = \varphi_1/\varphi_2 \). If \(S \in \text{Alg Lat } T \), then there exist an outer \(\eta \in H^\infty \) and \(\delta \in H^\infty \) such that \(\eta(T)S = \delta(T) + D \), where \(D \) is an operator on \(H \) satisfying
\[
D[\{(\xi H^2 \oplus \varphi_1H^2) \oplus (H^2 \oplus \varphi_2H^2) \oplus \cdots \oplus (H^2 \oplus \varphi_kH^2)\}]
\subseteq \{(\xi H^2 \oplus \varphi_1H^2) \oplus 0 \oplus \cdots \oplus 0\} \text{ for any } \xi \psi.
\]

Proof. Let \(T_j = S(\varphi_j), H_j = H^2 \oplus \varphi_jH^2 \) and let \(P_j \) denote the (orthogonal) projection from \(H^2 \) onto \(H_j, j = 1, 2, \ldots, k \). For brevity of notation, we identify \(H_j \) as a subspace of \(H \) in the natural way. Let \(e = P_1(1) \in H_1 \) and \(h = S e \in H_1 \), since \(S \) leaves \(H_1 \) invariant. Let
\[
h(\lambda) = h(\lambda)h_e(\lambda)
= h(\lambda)\exp\left[\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + \lambda}{e^{it} - \lambda} k(t) \, dt \right]
\text{ for } |\lambda| < 1,
\]
where \(h \) and \(h_e \) are the inner and outer parts of \(h \), and \(k(t) = \log|h_e(t)| \) a.e. Fix \(M > 0 \) and let \(\alpha = \{t: |h_e(t)| > M\} \). Let
\[
\eta(\lambda) = \exp\left[\frac{1}{2\pi} \int_\alpha \frac{e^{it} + \lambda}{e^{it} - \lambda} (-k(t)) \, dt \right]
\text{ for } |\lambda| < 1,
\]
and \(\delta = \eta \). Then it is easily seen that \(\eta, \delta \in H^\infty \) and \(\eta(T)Se = \delta(T)e \). Let \(D = \eta(T)S - \delta(T) \). Then \(De = 0 \).

We first check that \(D(H_2 \oplus \cdots \oplus H_k) = \{0\} \). Let \(f \in H^\infty \) and consider the element \(P_j(f) \) in \(H_j, j = 2, 3, \ldots, k \). Let \(W \) and \(U \) be the invariant subspaces for \(T \) generated by \(P_j(f) \) and \(e \oplus P_j(f) \in H_j \oplus H_j \), respectively. Let \(g \in W \cap U \subset H_j \). Then there exists a sequence of polynomials \(\{p_n\} \) such that \(p_n(T)(e \oplus P_j(f)) \to 0 \) \(\oplus g \) as \(n \to \infty \). Hence \(P_1(p_n) = p_n(T)e \to 0 \) and \(P_1(p_n) = p_n(T)P_j(f) \to g \), which imply that \(P_j(p_n) = P_jP_1(p_n) \to 0 \) and \(f(T)P_j(p_n) \to g \). It follows that \(g = 0 \), whence \(W \cap U = \{0\} \). Since \(De = 0 \), we have \(D(P_j(f)) = D(e \oplus P_j(f)) \in W \cap U = \{0\} \). Therefore \(D(P_j(f)) = 0 \). Note that \(\langle P_j(f): f \in H^\infty \rangle \) is dense in \(H_j \). We conclude that \(D \bar{H}_j = \{0\} \) for \(j = 2, 3, \ldots, k \). Hence \(D(H_2 \oplus \cdots \oplus H_k) = \{0\} \), as asserted.
Next we show that \(D(\xi H^2 \ominus \varphi_1 H^2) \subseteq \xi \varphi_2 H^2 \ominus \varphi_1 H^2 \) for any \(\xi \psi \). Let \(W_1 = \xi H^2 \ominus \varphi_1 H^2 \) and \(U_1 = \{ P_1(\xi f) \oplus P_2(f) : f \in H^2 \} \). For \(g = \xi f \in W_1 \), \(Dg = D(P_1(\xi f) \oplus P_2(f)) \in W_1 \cap U_1 \). Thus to complete the proof it suffices to show that \(W_1 \cap U_1 \subseteq \xi \varphi_2 H^2 \ominus \varphi_1 H^2 \). Let \(w \in W_1 \cap U_1 \). There exists a sequence \(\{ f_n \} \subseteq H^2 \) such that \(P_1(\xi f_n) \oplus P_2(f_n) \to w \oplus 0 \) as \(n \to \infty \). Assume that \(f_n = g_n + \varphi_2 h_n \), where \(g_n \in H^2 \ominus \varphi_2 H^2 \) and \(h_n \in H^2 \) for each \(n \). We infer that \(P_1(\xi g_n + \varphi_2 h_n) \to w \) and \(g_n \to 0 \). Thus \(w - P_1(\xi \varphi_2 h_n) = (w - P_1(\xi g_n + \varphi_2 h_n)) + P_1(\xi g_n) \to 0 \). It follows that \(w \in \xi \varphi_2 H^2 \ominus \varphi_1 H^2 \) completing the proof.

Lemma 6. Let \(T = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k) \) be a Jordan operator defined on \(H = (H^2 \ominus \varphi_1 H^2) \oplus \cdots \oplus (H^2 \ominus \varphi_k H^2) \) and let \(\psi = \varphi_1/\varphi_2 \). Then \(T \) is reflexive if and only if \(S(\psi) \) is.

Proof. Necessity. Note that \(T \varphi_2(T)H \) is unitarily equivalent to \(S(\psi) \). (An explicit proof can be found in [6, pp. 315–316].) Since \(\varphi_2(T) \in \text{Alg Lat } T \cap \{ T \}' \) and \(\text{Alg Lat } S(\psi) \cap \{ S(\psi) \}' = \text{Alg } S(\psi) \), the reflexivity of \(T \) implies that of \(S(\psi) \) by Lemma 4.

Sufficiency. Let \(T_j, H_j \) and \(P_j \) be as in the proof of Lemma 5 and let \(S \in \text{Alg Lat } T \). By Lemma 5, there exist an outer \(\eta \in H^\infty \) and \(\delta \in H^\infty \) such that \(\eta(T)S = \delta(T) + D \), where \(D \) satisfies

\[
D\left[(\xi H^2 \ominus \varphi_1 H^2) \oplus H_2 \oplus \cdots \oplus H_k \right]
\subseteq (\xi \varphi_2 H^2 \ominus \varphi_1 H^2) \oplus 0 \oplus \cdots \oplus 0 \quad \text{for any } \xi \psi.
\]

Let \(D_1 = D|H^2 \ominus \psi H^2 \) and \(D_2 = D|(\psi H^2 \ominus \varphi_1 H^2) \oplus H_2 \oplus \cdots \oplus H_k \). Since \(D(\psi H^2 \ominus \varphi_1 H^2) \subseteq \xi \varphi_2 H^2 \ominus \varphi_1 H^2 = \{0\} \) and \(D(H_2 \oplus \cdots \oplus H_k) = \{0\} \), we have \(D_2 = 0 \). On the other hand, for any \(\xi \psi \) consider the subspace \(\xi H^2 \ominus \psi H^2 \) in \(\text{Lat } S(\psi) \). Note that \(\xi H^2 \ominus \psi H^2 \subseteq \xi H^2 \ominus \varphi_1 H^2 \). Hence from the property of \(D \) we infer that \(D_1(\xi H^2 \ominus \psi H^2) \subseteq \xi \varphi_2 H^2 \ominus \varphi_1 H^2 \). Thus the operator \(D' \) defined on \(H^2 \ominus \psi H^2 \) by \(D'f = \varphi_2 D_1 f \) for \(f \in H^2 \ominus \psi H^2 \) is in \(\text{Alg Lat } S(\psi) \). By the reflexivity of \(S(\psi) \), there exists \(\rho \in H^\infty \) such that \(D'f = \rho(S(\psi))f \) for all \(f \in H^2 \ominus \psi H^2 \). It follows that \(D_1 f = \varphi_2(\rho(\varphi_1 f)) = P_1(\varphi_2 \varphi_1 f) \), where \(\rho \) denotes the projection from \(H^2 \) onto \(H^2 \ominus \psi H^2 \). For any \(h \in H, h = f + g \) where \(f \in H^2 \ominus \psi H^2 \) and \(g = g_1 \oplus \cdots \oplus g_k \in (\psi H^2 \ominus \varphi_1 H^2) \oplus H_2 \oplus \cdots \oplus H_k \). We deduce that \((\varphi_2 \rho)(T)h = (\varphi_2 \rho)(T_1)(f + g_1) = P_1(\varphi_2 \rho f + \varphi_2 \rho g_1) = P_1(\varphi_2 \rho f) = D_1 f \). Consequently, \(Dh = D_1 f + D_2 g = (\varphi_2 \rho)(T)h \). This shows that \(D = (\varphi_2 \rho)(T) \) and hence \(\eta(T)S = \delta(T) + (\delta + \varphi_2 \rho)(T) \). Since \(\eta \) is outer, we conclude that \(S \in \{ T \}' = \text{Alg } T \) (cf. [7, Theorem 3.2]). Thus \(T \) is reflexive, completing the proof.

Now Theorem 1 follows from Theorem 2 and Lemma 6. The condition in Theorem 1 was first formulated by C. Foiaş for general \(C_0 \) contractions in a private communication to the author. He also proved the necessity part. However our presentation here is more simplified.

References

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China