ON THE REFLEXIVITY OF $C_0(N)$ CONTRACTIONS

PEI YUAN WU

Abstract. Let T be a $C_0(N)$ contraction on a separable Hilbert space and let
$J = S(\varphi_1) \oplus S(\varphi_2) \oplus \cdots \oplus S(\varphi_k)$ be its Jordan model, where $\varphi_1, \varphi_2, \ldots, \varphi_k$ are
inner functions satisfying $\varphi_j|\varphi_{j-1}$ for $j = 2, 3, \ldots, k$, and $S(\varphi_j)$ denotes the com-
pression of the shift on $H^2 \ominus \varphi_j H^2, j = 1, 2, \ldots, k$. In this note we show that T is
reflexive if and only if $S(\varphi_1/\varphi_2)$ is.

In this note we only consider bounded linear operators defined on complex,
separable Hilbert spaces. For each operator T, let $\{T\}', \{T\}''$ and $\text{Alg } T$ denote
the commutant, double commutant and the weakly closed algebra generated by T
and I, respectively. Let $\text{Lat } T$ denote the lattice of invariant subspaces of T and
$\text{Alg Lat } T$ denote the (weakly closed) algebra of operators which leave all the
subspaces in $\text{Lat } T$ invariant. Recall that T is reflexive if and only if $\text{Alg Lat } T =$
$\text{Alg } T$. In [1] Deddens and Fillmore characterized reflexive operators on finite-di-
mensional spaces in terms of their Jordan canonical forms. Now we generalize their
result to $C_0(N)$ contractions. More specifically, we prove the following

Theorem 1. If T is a $C_0(N)$ contraction and $J = S(\varphi_1) \oplus S(\varphi_2) \oplus \cdots \oplus S(\varphi_k)$ is
its Jordan model, then T is reflexive if and only if $S(\varphi_1/\varphi_2)$ is.

A contraction $T (|| T || < 1)$ on a Hilbert space is of class $C_0(N)$ for some integer
$N > 1$ if there exists an inner function φ such that $\varphi(T) = 0$ and the defect indices
of T, $d_T \equiv \text{rank}(I - T^* T)^{1/2}$ and $d_T^* \equiv \text{rank}(I - TT^*)^{1/2}$, are both equal to some
$M < N$. A $C_0(N)$ contraction is unitarily equivalent to the operator T defined on
$H = H_N^2 \ominus \Theta_T H_N^2$ by $T f = P(e^{i}f)$ for $f \in H$, where H_N^2 denotes the standard
Hardy space of C^N-valued functions defined on the unit circle, Θ_T is the charac-
teristic function of T, and P denotes the (orthogonal) projection from H_N^2 onto H (cf.
[5, Chapter VII]). Two operators T_1, T_2 are quasi-similar if there exist one-to-one
operators X and Y with dense ranges (called quasi-affinities) such that $X T_1 = T_2 X$
and $Y T_2 = T_1 Y$. A $C_0(N)$ contraction is quasi-similar to a uniquely determined
Jordan operator (called its Jordan model) $J = S(\varphi_1) \oplus S(\varphi_2) \oplus \cdots \oplus S(\varphi_k)$,
where $\varphi_1, \varphi_2, \ldots, \varphi_k$ are inner functions satisfying $\varphi_j|\varphi_{j-1}, j = 2, 3, \ldots, k$, and
$S(\varphi_j)$ denotes the operator defined on $H^2 \ominus \varphi_j H^2$ by $S(\varphi_j)f = P(e^{i}f)$ for $f \in H^2$
$\ominus \varphi_j H^2, P_j$ being the (orthogonal) projection from H^2 onto $H^2 \ominus \varphi_j H^2, j =$
$1, 2, \ldots, k$ (cf. [4]). For ξ and η in $H^\infty, \xi \wedge \eta = 1$ denotes that ξ and η have no
nontrivial common inner divisor.

Received by the editors February 6, 1979 and, in revised form, July 11, 1979.
Key words and phrases. $C_0(N)$ contraction, reflexive operator, Jordan model for $C_0(N)$ contractions,
quasi-similarity.

1This research was partially supported by National Science Council of Taiwan, Republic of China.

© 1980 American Mathematical Society

0002-9939/80/0000-0312/$02.25

405

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We start the proof of Theorem 1 by showing that for $C_0(N)$ contractions, the property of reflexivity is preserved under quasi-similarities. This generalizes Corollary 4.5 in [7].

Theorem 2. Let T_1 and T_2 be $C_0(N)$ contractions on H_1 and H_2, respectively. Assume that T_1 is quasi-similar to T_2. Then T_1 is reflexive if and only if T_2 is.

Proof. We may assume that T_1 and T_2 are defined on $H_1 = H_1^* \ominus \Theta_1 H_N^*$ and $H_2 = H_2^* \ominus \Theta_2 H_N^*$ by $T_1 f = P_1(e^{t} f)$ and $T_2 g = P_2(e^{t} g)$, respectively, where $f \in H_1$ and $g \in H_2$. Since T_1 and T_2 are quasi-similar to each other, there exist bounded analytic functions Φ and Ψ such that $\Phi \Theta_1 = \Theta_2 \Psi$ and $(\det \Phi)(\det \Psi) \wedge (\det \Theta_1)(\det \Theta_2) = 1$ (cf. [3] and [2]). Let Φ^t denote the algebraic adjoint of Φ. It can be easily verified that the operators $X : H_1 \rightarrow H_2$ and $Y : H_2 \rightarrow H_1$ defined by $X f = P_2(e^t f)$ for $f \in H_1$ and $Y g = P_1((\det \Psi)\Phi^t g)$ for $g \in H_2$ implement the quasi-affinities intertwining T_1 and T_2 (cf. [2, Theorem 2]). Moreover, we have $YX = \eta(T_1)$ and $XY = \eta(T_2)$, where $\eta = (\det \Phi)(\det \Psi)$. Let m_1 and m_2 denote the minimal functions of T_1 and T_2, respectively. From the quasi-similarity of T_1 and T_2 we have $m_1 = m_2$.

Assume that T_1 is reflexive. Let $S \in \text{Alg Lat } T_2$ and $K \in \text{Lat } T_1$. Then $YSXK \subseteq \overline{YSXK} = \overline{\eta(T_1)K} K \wedge (\det \Theta_1) = 1$ implies that $\eta \wedge m_1 = 1$ (cf. [5, Theorem VI.5.2]). In particular, η and the minimal function of $T_1|K$ have no nontrivial common inner divisor. Thus $\eta(T_1|K)$ is a quasi-affinity (cf. [7, Theorem 2.3]) and therefore $\overline{\eta(T_1)K} = \overline{\eta(T_1|K)K} = K$. We have $YSXK \subseteq K$ for any $K \in \text{Lat } T_1$, which shows that $YSX \in \text{Alg Lat } T_1 = \text{Alg } T_1$. Hence $YSX = \nu(T_1)^{-1} u(T_1)$ for some $u, v \in H^\infty$, where $v \wedge m_1 = 1$ (cf. [7, Theorem 3.2]). So $\nu(T_1)YSX = u(T_1)$ and we have $\eta(T_2)\nu(T_2)S\eta(T_2) = XY\nu(T_2)SXY = X(\nu(T_1)YSX)Y = X\nu(T_1)Y = u(T_2)XY = u(T_2)\eta(T_2)$. Since as above $\eta(T_2)$ is a quasi-affinity, this implies that $\eta(T_2)\nu(T_2)S = u(T_2)$. Note that $\nu(T_2) \wedge m_2 = 1$. We obtain $S = (\nu(T_2)^{-1} u(T_2) \in \text{Alg } T_2$. This shows that T_2 is reflexive, completing the proof.

As a by-product of the preceding proof, we have the following

Theorem 3. Let T_1 and T_2 be $C_0(N)$ contractions on H_1 and H_2, respectively. If T_1 is quasi-similar to T_2, then $\text{Lat } T_1 \simeq \text{Lat } T_2$.

Proof. Let $X : H_1 \rightarrow H_2$ and $Y : H_2 \rightarrow H_1$ be the intertwining quasi-affinities given in the proof of Theorem 2. For $K_1 \in \text{Lat } T_1$ and $K_2 \in \text{Lat } T_2$ consider the mappings $K_1 \rightarrow \overline{XK_1}$ and $K_2 \rightarrow \overline{YK_2}$. As before we have

\[\overline{YXK_1} = \overline{\eta(T_1)K_1} = \overline{\eta(T_1|K_1)K_1} = K_1. \]

Similarly, $\overline{XYK_2} = K_2$. We infer that these mappings implement the lattice isomorphisms between $\text{Lat } T_1$ and $\text{Lat } T_2$ and hence $\text{Lat } T_1 \simeq \text{Lat } T_2$.

As a consequence of Theorem 2, to prove Theorem 1 it suffices to consider Jordan operators. The next lemma will be needed in the proof of the necessity part.

Lemma 4. Let T be an operator on a Hilbert space H. Let $S \in \text{Alg Lat } T \cap \{T\}'$ and $T_1 = T|SH$. Assume that $\text{Alg Lat } T_1 \cap \{T_1\}' = \text{Alg } T_1$. If T is reflexive, so is T_1.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Let \(S_1 \in \text{Alg Lat } T_1 \). Consider \(S_1 S \) as an operator on \(H \). For any \(K \in \text{Lat } T \), \(SK \subseteq K \cap \overline{SH} \). Since \(K \cap \overline{SH} \subseteq \text{Lat } T_1 \), we have \(S_1 SK \subseteq S_1(K \cap \overline{SH}) \subseteq K \cap \overline{SH} \subseteq K \). This shows that \(S_1 S \in \text{Alg Lat } T = \text{Alg } T \). Hence \(S_1 TS = S_1 ST = TS_1 S \). It follows that \(S_1 T_1 = T_1 S_1 \) on \(\overline{SH} \), that is, \(S_1 \in \{ T_1 \}' \). We conclude that \(S_1 \in \text{Alg Lat } T_1 \cap \{ T_1 \}' = \text{Alg } T_1 \) and hence \(T_1 \) is reflexive.

To prove the sufficiency part, we essentially follow the same line of arguments as given by Deddens and Fillmore [1] for reflexive linear transformations. The next two lemmas are analogous to part of Theorem 2 and its Corollary in [1], respectively.

Lemma 5. Let \(T = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k) \) be a Jordan operator defined on \(H = (H^2 \oplus \varphi_1 H^2) \oplus \cdots \oplus (H^2 \oplus \varphi_k H^2) \) and let \(\psi = \varphi_1/\varphi_2 \). If \(S \in \text{Alg Lat } T \), then there exist an outer \(\eta \in H^\infty \) and \(\delta \in H^\infty \) such that \(\eta(T)S = \delta(T) + D \), where \(D \) is an operator on \(H \) satisfying
\[
D[(\xi H^2 \oplus \varphi_1 H^2) \oplus (H^2 \oplus \varphi_2 H^2) \oplus \cdots \oplus (H^2 \oplus \varphi_k H^2)]
\subseteq (\xi \varphi_2 H^2 \oplus \varphi_1 H^2) \oplus 0 \oplus \cdots \oplus 0 \quad \text{for any } \xi \psi.
\]

Proof. Let \(T_j = S(\varphi_j) \), \(H_j = H^2 \oplus \varphi_j H^2 \) and let \(P_j \) denote the (orthogonal) projection from \(H^2 \) onto \(H_j \), \(j = 1, 2, \ldots, k \). For brevity of notation, we identify \(H_j \) as a subspace of \(H \) in the natural way. Let \(e = P_1(1) \in H_1 \) and \(h = Se \in H_1 \), since \(S \) leaves \(H_1 \) invariant. Let
\[
h(\lambda) = h(\lambda)h_\varepsilon(\lambda)
= h_\varepsilon(\lambda) \exp \left[\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + \lambda}{e^{it} - \lambda} k(t) \, dt \right]
\]
for \(|\lambda| < 1 \),
where \(h_\varepsilon \) and \(h_\varepsilon \) are the inner and outer parts of \(h \), and \(k(t) = \log|h_\varepsilon(t)| \) a.e. Fix \(M > 0 \) and let \(\alpha = \{ t : |h_\varepsilon(t)| > M \} \). Let
\[
\eta(\lambda) = \exp \left[\frac{1}{2\pi} \int_\alpha \frac{e^{it} + \lambda}{e^{it} - \lambda} (-k(t)) \, dt \right]
\]
for \(|\lambda| < 1 \), and \(\delta = \eta h \). Then it is easily seen that \(\eta, \delta \in H^\infty \) and \(\eta(T)Se = \delta(T)e \). Let \(D = \eta(T)S - \delta(T) \). Then \(De = 0 \).

We first check that \(D(H_2 \oplus \cdots \oplus H_k) = \{0\} \). Let \(f \in H^\infty \) and consider the element \(P_j(f) \) in \(H_j, j = 2, 3, \ldots, k \). Let \(W \) and \(U \) be the invariant subspaces for \(T \) generated by \(P_j(f) \) and \(e \oplus P_j(f) \in H_1 \oplus H_j \), respectively. Let \(g \in W \cap U \subseteq H_j \). Then there exists a sequence of polynomials \(\{ p_n \} \) such that \(p_n(T)(e \oplus P_j(f)) \to 0 \) \(\oplus g \) as \(n \to \infty \). Hence \(P_1(p_n) = p_n(T)e \to 0 \) and \(P_j(p_nf) = p_n(T)P_j(f) \to g \), which imply that \(P_j(p_n) = P_jP_1(p_n) \to 0 \) and \(f(T)P_j(p_n) \to g \). It follows that \(g = 0 \), whence \(W \cap U = \{0\} \). Since \(De = 0 \), we have \(D(P_j(f)) = D(e \oplus P_j(f)) \in W \cap U = \{0\} \). Therefore \(D(P_j(f)) = 0 \). Note that \(\{ P_j(f) : f \in H^\infty \} \) is dense in \(H_j \). We conclude that \(D(H_j) = \{0\} \) for \(j = 2, 3, \ldots, k \). Hence \(D(H_2 \oplus \cdots \oplus H_k) = \{0\} \), as asserted.
Next we show that $D(\xi H^2 \ominus \varphi_1 H^2) \subseteq \xi \varphi_2 H^2 \ominus \varphi_1 H^2$ for any $\xi \varphi$. Let $W_1 = \xi H^2 \ominus \varphi_1 H^2$ and $U_1 = \{ P_1(\xi f) \oplus P_2(f) : f \in H^2 \}$. For $g = \xi f \in W_1$, $Dg = D(P_1(\xi f) \oplus P_2(f)) \in W_1 \cap U_1$. Thus to complete the proof it suffices to show that $W_1 \cap U_1 \subseteq \xi \varphi_2 H^2 \ominus \varphi_1 H^2$. Let $w \in W_1 \cap U_1$. There exists a sequence $\{ f_n \} \subseteq H^2$ such that $P_1(\xi f_n) \oplus P_2(f_n) \to w \oplus 0$ as $n \to \infty$. Assume that $f_n = g_n + \varphi_2 h_n$, where $g_n \in H^2 \ominus \varphi_2 H^2$ and $h_n \in H^2$ for each n. We infer that $P_1(\xi g_n + \xi \varphi_2 h_n) \to w$ and $g_n \to 0$. Thus $w - P_1(\xi \varphi_2 h_n) = (w - P_1(\xi g_n + \xi \varphi_2 h_n)) + P_1(\xi g_n) \to 0$. It follows that $w \in \xi \varphi_2 H^2 \ominus \varphi_1 H^2$, completing the proof.

Lemma 6. Let $T = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k)$ be a Jordan operator defined on $H = (H^2 \ominus \varphi_1 H^2) \oplus \cdots \oplus (H^2 \ominus \varphi_k H^2)$ and let $\varphi = \varphi_1 / \varphi_2$. Then T is reflexive if and only if $S(\varphi)$ is.

Proof. **Necessity.** Note that $T(\varphi H^2)H$ is unitarily equivalent to $S(\varphi)$. (An explicit proof can be found in [6, pp. 315–316].) Since $\varphi(\varphi H^2) \ominus \varphi_2 H^2$ and $\varphi_2 \ominus \varphi H^2$, the reflexivity of T implies that of $S(\varphi)$ by Lemma 4.

Sufficiency. Let T, H_j and P_j be as in the proof of Lemma 5 and let $S \in \text{Alg Lat} T$. By Lemma 5, there exist an outer $\eta \in H^\infty$ and $\delta \in H^\infty$ such that $\eta(T)S = \delta(T) + D$, where D satisfies

$$D[(\xi H^2 \ominus \varphi_1 H^2) \oplus H_2 \oplus \cdots \oplus H_k] \subseteq (\xi \varphi_2 H^2 \ominus \varphi_1 H^2) \oplus H_2 \oplus \cdots \oplus H_k$$

for any $\xi \varphi$. Let $D_1 = D[H^2 \ominus \varphi H^2]$ and $D_2 = D[\varphi H^2 \ominus \varphi_1 H^2] \oplus H_2 \oplus \cdots \oplus H_k$. Since $D(\varphi H^2 \ominus \varphi_1 H^2) \subseteq \xi \varphi_2 H^2 \ominus \varphi_1 H^2 = \{ 0 \}$ and $D(\varphi_2 \ominus \varphi_1 H^2) = \{ 0 \}$, we have $D_2 = 0$. On the other hand, for any $\xi \varphi$ consider the subspace $\xi H^2 \ominus \varphi H^2$ in $\text{Lat} S(\varphi)$. Note that $\xi H^2 \ominus \varphi H^2 \subseteq \xi H^2 \ominus \varphi_1 H^2$. Hence from the property of D we infer that $D_1(\xi H^2 \ominus \varphi H^2) \subseteq \xi \varphi_2 H^2 \ominus \varphi_1 H^2$. Thus the operator D' defined on $H^2 \ominus \varphi H^2$ by $D'f = \varphi_2 D_1 f$ for $f \in H^2 \ominus \varphi H^2$ is in $\text{Alg Lat} S(\varphi)$. By the reflexivity of $S(\varphi)$, there exists ρ in H^∞ such that $D'f = \rho(S(\varphi)f)$ for all $f \in H^2 \ominus \varphi H^2$. It follows that $D_1 f = P_2(\rho f)$, where P denotes the projection from H^2 onto $H^2 \ominus \varphi H^2$. For any $h \in H$, $h = f + g$ where $f \in H^2 \ominus \varphi H^2$ and $g = g_1 \oplus \cdots \oplus g_k \in (\varphi H^2 \ominus \varphi_1 H^2) \oplus H_2 \oplus \cdots \oplus H_k$. We deduce that $(\varphi_2 \rho)(T)h = (\varphi_2 \rho)(T) = P_1(\rho)h = P_1(\rho)h$. Consequently, $Dh = D_1 f + D_2 g = (\varphi_2 \rho)(T)h$. This shows that $D = (\varphi_2 \rho)(T)$ and hence $\eta(T)S = \delta(T) + (\varphi_2 \rho)(T)h$. Since η is outer, we conclude that $S \in \{ T \}' = \text{Alg T}$ (cf. [7, Theorem 3.2]). Thus T is reflexive, completing the proof.

Now Theorem 1 follows from Theorem 2 and Lemma 6. The condition in Theorem 1 was first formulated by C. Foiaş for general C_0 contractions in a private communication to the author. He also proved the necessity part. However our presentation here is more simplified.

References

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China