Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Best $ L\sp{p}$-approximation of generalized biaxisymmetric potentials

Author: Peter A. McCoy
Journal: Proc. Amer. Math. Soc. 79 (1980), 435-440
MSC: Primary 30E10; Secondary 31A35, 35C99
MathSciNet review: 567987
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let F be a real-valued generalized biaxisymmetric potential (GBASP ) in $ {L^p}(p \geqslant 1)$ on $ \Sigma $, the open unit sphere about the origin. Convergence of a sequence of best harmonic polynomial approximates to F in $ {L^p}$ identifies those F that harmonically continue as entire function GBASP and determines their order and type. The analysis utilizes the Bergman and Gilbert Integral Operator Method to extend results from classical function theory on the best polynomial approximation of analytic functions of one complex variable.

References [Enhancements On Off] (What's this?)

  • [1] R. Askey, Orthogonal polynomials and special functions, Regional Conference Series in Applied Math., SIAM, Philadelphia, Pa., 1975. MR 0481145 (58:1288)
  • [2] S. Bergman, Integral operators in the theory of linear partial differential equations, Ergebnisse der Math. und ihrer Grenzebiete, heft 23, Springer-Verlag, Berlin and New York, 1961. MR 0141880 (25:5277)
  • [3] S. N. Bernstein, Leçon sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthier-Villars, Paris, 1926.
  • [4] D. L. Cotton, Partial differential equations in the complex domain, Research Notes in Mathematics, vol. 4, Pitman, San Francisco, Calif., 1976. MR 0481427 (58:1543)
  • [5] R. P. Gilbert, Function theoretic methods in partial differential equations, Math. in Sci. and Engineering, vol. 54, Academic Press, New York, 1969. MR 0241789 (39:3127)
  • [6] -, Constructive methods for elliptic equations, Lecture Notes in Math., vol. 365, Springer-Verlag, Berlin and New York, 1974. MR 0447784 (56:6094)
  • [7] R. P. Gilbert and Roger Newton, eds., Analytic methods in mathematical physics, Gordon and Breach Science Publ., New York, 1970. MR 0327404 (48:5746)
  • [8] I. I. Ibragimov and N. I. Sihaliev, On the best polynomial approximation in a space of analytic functions, Soviet Math. Dokl. 17 (1976), 381-384. MR 0422626 (54:10612)
  • [9] O. D. Kellogg, Foundations of potential theory, Frederic Ungar, New York, 1929.
  • [10] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monographs, vol. 5, Amer. Math. Soc., Providence, R.I., 1964. MR 0156975 (28:217)
  • [11] Peter A. McCoy, Polynomial approximation and growth of generalized axisymmetric potentials, Canad. J. Math. 31 (1979), 49-59. MR 518705 (81b:35011)
  • [12] -, Polynomial approximation of generalized biaxisymmetric potentials, J. Approximation Theory 25 (1979), 153-168. MR 531104 (81f:35048)
  • [13] -, Approximation and harmonic continuation of axially symmetric potentials in $ {E^3}$, Pacific J. Math. 81 (1979), 481-491. MR 547615 (80j:31009)
  • [14] A. R. Reddy, A contribution to best approximation in the $ {L^2}$ norm, J. Approximation Theory 11 (1974), 110-117. MR 0355066 (50:7543)
  • [15] -, Approximation of an entire function, J. Approximation Theory 3 (1970), 128-137. MR 0259453 (41:4091)
  • [16] E. B. Saff, Regions of meromorphy determined by the degree of best rational approximation, Proc. Amer. Math. Soc. 29 (1971), 30-38. MR 0281930 (43:7644)
  • [17] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., no. 22, Amer. Math. Soc., Providence, R.I., 1967.
  • [18] R. S. Varga, On an extension of a result of S. N. Bernstein, J. Approximation Theory 1 (1968), 176-179. MR 0240528 (39:1875)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30E10, 31A35, 35C99

Retrieve articles in all journals with MSC: 30E10, 31A35, 35C99

Additional Information

Keywords: Generalized biaxisymmetric potentials, harmonic polynomial approximates in $ {L^p}$, entire functions, Bergman and Gilbert Integral Operator Method
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society