Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Balayage defined by the nonnegative convex functions

Authors: P. Fischer and J. A. R. Holbrook
Journal: Proc. Amer. Math. Soc. 79 (1980), 445-448
MSC: Primary 46A55; Secondary 26B25
MathSciNet review: 567989
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Choquet order induced on measures on a linear space by the cone of nonnegative convex functions. We are concerned mainly with discrete measures, and the following result is typical. Let $ {x_1}, \ldots ,{x_r},{y_1}, \ldots ,{y_n}$, where $ r \leqslant n$, be points in $ {{\mathbf{R}}^d}$. Then

$\displaystyle \sum\limits_1^r {f({x_k}) \leqslant } \sum\limits_1^n {f({y_k})} $

for all nonnegative, continuous, convex functions f if, and only if, there exists a doubly stochastic matrix M such that

$\displaystyle {x_j} = \sum\limits_{k = 1}^n {{m_{jk}}{y_k}\quad (j = 1, \ldots ,r).} $

In the case $ d = 1$, this result may be found in the work of L. Mirsky; our methods allow us to place such results in a general setting.

References [Enhancements On Off] (What's this?)

  • [1] David Blackwell, Equivalent comparisons of experiments, Ann. Math. Statistics 24 (1953), 265–272. MR 0056251
  • [2] Pal Fischer and John A. R. Holbrook, Matrices sous-stochastiques et fonctions convexes, Canad. J. Math. 29 (1977), no. 3, 631–637 (French). MR 0625521
  • [3] Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
  • [4] L. Mirsky, Majorization of vectors and inequalities for convex functions, Monatsh. Math. 65 (1961), 159–169. MR 0123661
  • [5] Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
  • [6] Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0365062
  • [7] S. Sherman, On a theorem of Hardy, Littlewood, Polya, and Blackwell, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 826–831; errata: 38, 382 (1952). MR 0045787

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A55, 26B25

Retrieve articles in all journals with MSC: 46A55, 26B25

Additional Information

Keywords: Hardy-Littlewood-Pólya order, doubly stochastic matrices, balayage
Article copyright: © Copyright 1980 American Mathematical Society