A CURVATURE NORMAL FORM FOR 4-DIMENSIONAL
KÄHLER MANIFOLDS

DAVID L. JOHNSON

Abstract. A curvature operator R is said to possess a normal form relative to some space of curvature operators \mathcal{P} if R is determined uniquely in \mathcal{P} by the critical points and critical values of the associated sectional curvature function. It is shown that any curvature operator of Kähler type in real dimension 4 with positive-definite Ricci curvature has a normal form relative to the space of all Kähler operators.

In [2] the author showed that a generic set of curvature operators of Kähler type with positive-definite Ricci tensor in real dimensions 4 and 6 possess normal forms, analogous to the diagonalization of symmetric operators but related to the sectional curvature. This concept arose out of work of Singer and Thorpe [3]; their normal form for Einstein 4-manifolds simplified greatly many classical integral expressions and showed plainly the relationship between curvature properties and characteristic numbers for these manifolds.

In this note, the author hopes to rectify, in real dimension 4, the major drawbacks of the normal form theorem proven in [2], which were the implicit nature of the normal form itself and the involved topological methods used in its proof.

The author wishes to express his gratitude to the Departamento de Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad de Valencia, for support provided during the preparation of this note. I am especially grateful to Professors A. M. Naveira and A. Ferrandez for many enlightening discussions during my stay.

1. Definitions and statement of the theorem. A curvature operator $R \in \mathcal{R}(V)$ on a finite-dimensional inner product space V is a symmetric operator on $\Lambda^2(V)$. R is called proper if it satisfies the standard first Bianchi identity. If V is a hermitian complex vector space with complex structure automorphism $J: V \to V$, define $J \in \mathcal{K}(V)$ by $J(v \wedge w) = Jv \wedge Jw$. $R \in \mathcal{K}(V)$ is called Kähler, denoted by $R \in \mathcal{K}(V)$, if $JR = JR = R$.

The Grassmannian $G(2, V)$ of oriented 2-planes in V is identified with $\{ \xi \in \Lambda^2(V) | |\xi| = 1, \xi \wedge \xi = 0 \}$ [3]. The sectional curvature $r_R: G(2, V) \to \mathbb{R}$ of $R \in \mathcal{R}(V)$ is then defined by $r_R(P) = \langle RP, P \rangle$.

Let $\mathcal{P} \subset \mathcal{R}(V)$ be a subspace. A proper $R \in \mathcal{P}$ has a normal form relative to \mathcal{P} if there is a set $\{P_i\}$ of critical points of the sectional curvature r_R so that, if
A CURVATURE NORMAL FORM

THEOREM 1.1. Let \(V \simeq \mathbb{C}^2 \). Then each proper \(R \in \mathcal{K}(V) \) with positive-definite Ricci tensor has a normal form relative to \(\mathcal{K}(V) \).

2. Properties of \(\mathcal{K}(V) \). Making the standard identification of \(o(V) \simeq \Lambda^2(V) \), the subspace \(u(V) \subset o(V) \) of skew-hermitian operators is the set of all \(J \)-invariant elements of \(\Lambda^2(V) \). Define \(I \in u(V) \) by identifying the operator \(J \) with an element \(I \) of \(\Lambda^2(V) \). In a unitary basis \(\{ e_1, e_1, \ldots, e_n, e_n \} \), \(I = \sum_i e_i \wedge v_i \).

In [2] the following useful formulas are derived; their proofs are simple calculations.

PROPOSITION 2.1. Let \(\rho(R) : V \to V \) be the Ricci tensor of \(R \). Then if \(R \) is proper

1. \(\langle \rho(R)v, w \rangle = \langle R(I), v \wedge w \rangle \);
2. \(\rho(R) \) is positive-definite if and only if \(\langle R(I), v \wedge Jv \rangle > 0 \) for each \(v \in V \).

A plane \(P \in G(2, V) \) will be called holomorphic if \(JP = P \). The set of all holomorphic planes is clearly 2 copies (+ and −) of \(CP(V) \).

PROPOSITION 2.2. (1) \(P \in \pm CP(V) \) is a critical point of \(r_R \) if and only if \(P \) is a critical point of \(ri_{\pm CP(V)} \). In the case \(V \simeq \mathbb{C}^2 \), \(P \) is a holomorphic critical point of \(r_R \) if and only if \(RP = AP + B \ast P \), where \(A = r_R(P) \) and \(\ast \) is the Hodge star operator.

(2) Let \(V \simeq \mathbb{C}^2 \), \(Q \in G(2, V) - (\pm CP(V)) \) is a critical point of \(r_R \) if and only if \(RQ = A(Q + JQ - \langle Q, I \rangle I) \), where \(A = r_R(Q) \). Thus \(\langle RQ, I \rangle = 0 \).

COROLLARY 2.3. For \(V \simeq \mathbb{C}^2 \), there are always at least 2 holomorphic critical points. If \(\rho(R) \) is positive-definite, there are at least 3 nonholomorphic critical points \(\{ Q_i \} \) with \(\{ Q_i + JQ_i \} \) linearly independent.

PROOF. The first statement is clear. For the second, note that each nonholomorphic critical point \(Q \) satisfies

\[Q + JQ \in \{ \xi \in u(V) | \langle RI, \xi \rangle = 0 \} = RI^\perp. \]

Also, each \(\xi \in RI^\perp \), up to a scalar factor, is of the form \(Q + JQ \) for some plane \(Q \in G(2, V) - (\pm CP(V)) \), since \(\xi = av_1 \wedge v_1 \ast + bv_2 \wedge v_2 \ast \) for an appropriate choice of unitary basis. \(\rho(R) \) positive-definite implies that \(ab < 0 \). Choose a basis so that \(a > 0, b < 0 \). Then, if \(Q = (\sqrt{a} v_1 + \sqrt{-b} v_2) \wedge (\sqrt{a} v_1 \ast + \sqrt{-b} v_2 \ast) \), \(Q + JQ = 2\xi \). Thus \(RI^\perp \) is in essence the space of possible nonholomorphic critical points of \(R \). Let \(A : RI^\perp \to I^\perp = \{ \xi \in u(V) | \langle RI, \xi \rangle = 0 \} \) be the orthogonal projection. \(A(\xi) = \xi - \frac{1}{2} \langle \xi, I \rangle I \). As \(\langle RI, I \rangle > 0, A \) is an isomorphism.

The operator \(RA^{-1} : I^\perp \to I^\perp \) is symmetric, since, for \(\alpha, \beta \in RI^\perp \), \(\langle RA^{-1}(A\alpha), A\beta \rangle = \langle RA, A\beta \rangle = \langle \alpha, R\beta \rangle = \langle AA, RA^{-1}(A\beta) \rangle \). Clearly any eigenvector \(\xi \) of \(RA^{-1} \) is of the form \(\xi = \lambda A(Q + JQ) \), where \(Q \) is a critical plane of \(r_R \). As \(\dim(I^\perp) = 3 \) the corollary is finished. □

3. Proof of Theorem 1.1. Let \(R \) be as in the statement of the theorem, with critical planes \(\{ P_1, P_2, Q_1, Q_2, Q_3 \} \) as given in Corollary 2.3. If \(R' \) is another
operator with the same critical points and values, $R'I^\perp = RI^\perp$; moreover, $R - R' = T$ is zero on RI^\perp, as $(R - R')A^{-1} = 0$ (A is the same for both operators). Thus, $T(\xi) = \mu < \xi, RI > RI$ as T is a symmetric operator on $u(V)$ with RI as the only possible nonzero eigenvector. However, $0 = \langle TP, P \rangle_\mu = \mu \langle P, RI \rangle^2$ with $\langle RI, P \rangle > 0$, thus $T = 0$. □

Remark. It is possible to extend this result to all proper $R \in \mathbb{K}(V)$, but the proof is extremely inelegant [1].

4. An application. It is not difficult to apply the general techniques of this analysis, though not necessarily the normal form itself, to establish the classical Hopf conjecture in dimension 4 for Kähler manifolds, that nonnegative curvature implies nonnegative Euler characteristic. Indeed, one need only repeat Milnor's well-known proof in the general dimension 4 case, applied to any one critical point. Alternately, it is straightforward to show that the algebraic properties of operators with positive curvature are quite restricted.

Proposition 4.1. If $V \simeq \mathbb{C}^2$, any proper $R \in K(V)$ with nonnegative sectional curvature is positive semidefinite.

Proof. If R is not positive semidefinite, let ξ be an eigenvector with negative eigenvalue. ξ must lie in $u(V)$, so for an appropriate choice of unitary basis, $\xi = av_1 \wedge v_1 + bv_2 \wedge v_2$. As $r_R > 0$, $ab < 0$. As before, choose the basis so that $a > 0, b < 0$. Then $Q = (\sqrt{a} v_1 + \sqrt{-b} v_2) \wedge (\sqrt{a} v_1 + \sqrt{-b} v_2)$ will satisfy $Q + fQ = 2\xi$ and $r_R(Q) = \langle RQ, Q \rangle = \langle R\xi, \xi \rangle < 0$, contradicting the fact that $r_R > 0$. □

An unpublished but well-known result of B. Kostant states that, if R is any proper, positive semidefinite curvature operator, then the Gauss-Bonnet integrand is nonnegative. Thus,

Corollary 4.2. If M is a 4 real-dimensional Kähler manifold with nonnegative curvature, the Euler characteristic of M is also nonnegative.

Remark. In a forthcoming article, Curvature and Euler characteristic for six-dimensional Kähler manifolds, the author is able to verify this conjecture for six-dimensional Kähler manifolds as well, using techniques developed in [2].

References

Department of Mathematics, Texas A & M University, College Station, Texas 77843

Current address: Department of Mathematics, Rice University, Houston, Texas 77001