Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On unions of $ \nu $-embedded sets

Author: Hidenori Tanaka
Journal: Proc. Amer. Math. Soc. 79 (1980), 474-476
MSC: Primary 54C45; Secondary 54D60
MathSciNet review: 567996
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let A be a realcompact and C-embedded subspace of a space X and let B be a v-embedded subspace of a space X. Then $ A \cup B$ is v-embedded in X.

References [Enhancements On Off] (What's this?)

  • [1] Robert L. Blair, On 𝜐-embedded sets in topological spaces, TOPO 72—general topology and its applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), Springer, Berlin, 1974., pp. 46–79. Lecture Notes in Math., Vol. 378. MR 0358677
  • [2] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
  • [3] Akio Kato, Union of realcompact spaces and Lindelöf spaces, Canad. J. Math. 31 (1979), no. 6, 1247–1268. MR 553159,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C45, 54D60

Retrieve articles in all journals with MSC: 54C45, 54D60

Additional Information

Keywords: Hewitt realcompactification, C-embedded, $ {C^ \ast }$-embedded, z-embedded, v-embedded
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society