ORTHOCOMPACTNESS AND PERFECT MAPPINGS

DENNIS K. BURKE

Abstract. An example is given which shows that orthocompactness is not preserved by perfect maps. Subparacompact pointwise star-orthocompact spaces are orthocompact; this shows that orthocompactness is preserved by closed maps in the presence of subparacompactness.

A space X is said to be orthocompact if every open cover \mathcal{U} of X has an open refinement \mathcal{V} such that if $\mathcal{V}' \subset \mathcal{V}$, then $\bigcap \mathcal{V}'$ is open in X. Such a refinement \mathcal{V} of \mathcal{U} is called a Q-refinement, and any open collection \mathcal{W} such that $\bigcap \mathcal{W}'$ is open whenever $\mathcal{W}' \subset \mathcal{W}$ is called a Q-collection. The main purpose of this note is to provide an example showing the nonpreservation of orthocompactness under a perfect mapping, thus answering a question asked by B. Scott in [S4] and [S2]. The reader is referred to these papers for an in-depth discussion of orthocompactness, especially the product theory.

The description of the example follows below. We use the convention that an ordinal number is the set of smaller ordinals, and I denotes the "closed unit interval" from R. A mapping is a continuous onto function.

Example 1. There exists an orthocompact space X and a perfect mapping $f: X \rightarrow Y$ onto a nonorthocompact space Y.

Proof. Let $X_0 = \omega_1 \times I \times \{0\}$, $X_1 = \omega_1 \times I \times \{1\}$, and $X = X_0 \cup X_1$. For $\alpha, \beta \in \omega_1$, a nonlimit ordinal with $\alpha < \beta$, $x \in I$, and $\varepsilon > 0$ define

$$B(\alpha, \beta, x, \varepsilon) = \{(\gamma, z, 0) \in X_0: \alpha < \gamma < \beta, 0 < |x - z| < \varepsilon\}$$

$$\cup \{(\gamma, z, 1) \in X_1: \alpha < \gamma < \beta, |x - z| < \varepsilon\}.$$

Topologize X by describing local bases as follows: Points $(\beta, x, 0) \in X_0$ are isolated in X. Points $(\beta, x, 1) \in X_1$ have the set of all $B(\alpha, \beta, x, \varepsilon)$, for nonlimit $\alpha < \beta$ and $\varepsilon > 0$, for a local base. It may be revealing to the reader to provide a simple sketch here, and realize that X is similar to, but not quite the same as, the "Alexandroff double" of $\omega_1 \times I$.

To show X is orthocompact, let \mathcal{U} be an open cover of X. For each $x \in I$ consider \mathcal{U} as an open cover of $H_x = \omega_1 \times \{x\} \times \{1\}$. There exists a nonlimit ordinal $\alpha_x < \omega_1$, an uncountable subset $A_x \subset [\alpha_x, \omega_1)$, and $\varepsilon_x > 0$ (use $\varepsilon_x = 1/n$ for some appropriate positive integer n) such that for each $\beta \in A_x$ we have $B(\alpha_x, \beta, x, \varepsilon) \subset U$ for some $U \in \mathcal{U}$. Note that the collection $\mathcal{W}_x = \{B(\alpha_x, \beta, x, \varepsilon_x): \beta \in A_x\}$ is a Q-collection. For $x \in I$, let $J_x = \{z \in I: |x - z| < \varepsilon_x\}$; then $J_x \times \{x\}$ is an open cover of I so there is a finite set $F \subset I$ such

Received by the editors July 2, 1979 and, in revised form, August 29, 1979.

© 1980 American Mathematical Society

484
that \(I = \bigcup \{ J_x : x \in F \} \). If \(\beta_0 = \max \{ \alpha_x : x \in F \} \), the subspace
\[
Z = \{ (\alpha, x, i) : 0 < \alpha < \beta_0, x \in I, i \in \{0, 1\} \}
\]
is an open Lindelöf subspace of \(X \), so there is an open cover \(\mathcal{V} \) of \(Z \) such that \(\mathcal{V} \) is a \(Q \)-collection and each \(V \in \mathcal{V} \) is contained in some \(U \in \mathcal{U} \). It follows that
\[
\mathcal{W} = \mathcal{V} \cup \left(\bigcup \{ \{ x \} : x \in F \} \right) \cup \{ \{ p \} : p \in X_0 \}
\]
is a \(Q \)-cover of \(X \) that refines \(\mathcal{U} \).

Now let \(Y = X_0 \cup \omega_1 \) and define a map \(f : X \to Y : f(p) = p \) for \(p \in X_0 \) and \(f(\alpha, x, 1) = \alpha \) for \((\alpha, x, 1) \in X_1 \). Let \(Y \) have the quotient topology induced by \(f \). Clearly \(f^{-1}(y) \) is compact in \(X \) for each \(y \in Y \) so to show \(f \) is perfect it suffices to show \(f \) is a closed mapping. Let \(E \subset X \) be closed; to show \(f(E) \) is closed in \(Y \) we need only show that for any \(\beta \in \omega_1 - f(E) \) there is an open neighborhood \(V \) of \(\beta \) in \(Y \) such that \(V \cap f(E) = \emptyset \). Now \(f^{-1}(\beta) \cap E = (\{ \beta \} \times I \times \{1\}) \cap E = \emptyset \) so for each \(x \in I \) there is \(\delta_x > 0 \) and nonlimit \(\alpha_x < \beta \) such that \(\{ \beta \} \times \{ x \} \times \{0\} \subset U \cap f(E) = \emptyset \).

Using the compactness of \(I \), we see that there is some \(r_0 > 0 \), nonlimit \(\gamma_0 < \beta \), and a finite set \(F \subset I \) such that
\[
\left(\bigcup \{ B(\gamma_0, \beta, x, r_0) : x \in F \} \right) \cap E = \emptyset
\]
and \(\{ \beta \} \times I \times \{1\} \cup \{ B(\gamma_0, \beta, x, r_0) : x \in F \} \) is saturated with respect to \(f \), we have \(V = f(\bigcup \{ B(\gamma_0, \beta, x, r_0) : x \in F \}) \) as the desired neighborhood of \(\beta \) in \(Y \) where \(V \cap f(E) = \emptyset \).

To see that \(Y \) is not orthocompact, we note that if \(\beta \in \omega_1 \) and \(U \subset Y \) open, with \(\beta \in U \), there must be some nonlimit \(\alpha < \beta \) such that \([\alpha, \beta] \subset U \) and \([\alpha, \beta] \times \{ x \} \times \{0\} \subset U \) for all but finitely many \(x \in I \). Let \(B = \{ z_\alpha : \alpha < \omega_1 \} \) be a subset of \(I \), indexed by \(\omega_1 \), where \(z_\alpha \neq z_\beta \) if \(\alpha \neq \beta \). For each \(\beta < \omega_1 \) let \(G_\beta = f(B(0, \beta, z_\beta, 1)) \) and \(\mathcal{S} = \{ G_\beta : \beta < \omega_1 \} \); then \(\mathcal{S} \) is an open cover of \(Y \) and if \(\mathcal{K} \) is any open refinement of \(\mathcal{S} \) there is some \(\gamma \in \omega_1 \) such that \([\gamma, \omega_1) \subset \text{St}(\gamma, \mathcal{K}) \). This can happen only if there is an uncountable set \(A \subset [\gamma, \omega_1) \) where for each \(\beta \in A \) there is \(H_\beta \in \mathcal{K} \) such that \(\gamma \in H_\beta \subset G_\beta \). It follows that
\[
\left(\bigcap_{\beta \in A} H_\beta \right) \cap \{ \omega_1 \times \{ z_\alpha \} \times \{0\} \} = \emptyset
\]
for every \(\alpha \in A \), hence \(\gamma \notin \text{int}(\bigcap_{\beta \in A} H_\beta) \) and \(\mathcal{K} \) cannot be a \(Q \)-refinement of \(\mathcal{S} \). That concludes the verification of the stated properties of Example 1.

The proof, in the above example, that \(Y \) is not orthocompact, was given for completeness. Other authors have considered similar examples and results which essentially show the nonorthocompactness of \(Y \). G. Gruenhage [G] gave an example of a nonorthocompact space which is the closed image of an orthocompact space. Gruenhage's range space is homeomorphic to a closed subspace of \(Y \) (and, under CH, is homeomorphic to \(Y \)) and certainly Gruenhage's result implies the nonorthocompactness of \(Y \). The essential reason for the nonorthocompactness of \(Y \) can also be culled from results in [S1] or [S2], which show that \(\omega_1 \times (\omega_1 + 1) \) is not orthocompact. For other related results on the construction of nonorthocompact spaces the reader is referred to [HL].
The existence of Example 1 increases the importance of several generalizations of orthocompactness, considered by other authors, that are preserved under closed or perfect mappings. Weakly orthocompact spaces [S1] are preserved under perfect maps, discretely orthocompact spaces [J] are preserved under closed mappings, and pointwise star-orthocompact spaces [G] are preserved under closed mappings. These concepts are useful in helping to preserve orthocompactness, under closed maps, when in the presence of other covering properties. Junnila [J] has shown that a \(\theta \)-refinable space \(X \) is orthocompact if it is discretely orthocompact (see [J] for definition) and as a corollary he obtains:

THEOREM 2 [J]. If \(f: X \to Y \) is a closed continuous onto map, and \(X \) is a \(\theta \)-refinable orthocompact space, then so is \(Y \).

A somewhat weaker result can be obtained via the pointwise star-orthocompactness defined by Gruenhage [G]. A space \(X \) is pointwise star-orthocompact if for any open cover \(\mathcal{U} \) of \(X \) there is a \(Q \)-collection \(\{ V_x : x \in X \} \) such that \(x \in V_x \subseteq St(x, \mathcal{U}) \) for each \(x \in X \). Gruenhage shows that any pointwise star-orthocompact developable space is orthocompact; a modification of Gruenhage's proof actually yields the following stronger result.

THEOREM 3. If \(X \) is a subparacompact pointwise star-orthocompact space then \(X \) is orthocompact.

Proof. If \(\mathcal{U} \) is an open cover of the subparacompact space \(X \) there is a sequence \(\{ \mathcal{G}_n \} \) of open covers of \(X \) such that if \(x \in X \) there is some \(n \in N \) (depending on \(x \)) such that \(St(x, \mathcal{G}_n) \subseteq U \) for some \(U \in \mathcal{U} \) (see [B]). Apply pointwise star-orthocompactness to each \(\mathcal{G}_n \) and it follows that \(\mathcal{U} \) has an open refinement which is the union of a countable number of \(Q \)-collections. Since a subparacompact space is countably metacompact, we see that \(X \) is orthocompact [S1].

Since subparacompactness is preserved under closed maps [B], we have the weaker version of Theorem 2, using "subparacompact" in place of "\(\theta \)-refinable".

REFERENCES

DEPARTMENT OF MATHEMATICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056