Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


On the height of the first Stiefel-Whitney class

Author: Howard L. Hiller
Journal: Proc. Amer. Math. Soc. 79 (1980), 495-498
MSC: Primary 57T15; Secondary 55R40, 57R20
MathSciNet review: 568001
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {G_k}({{\mathbf{R}}^{n + k}})$ denote the grassmann manifold of k-planes in real $ (n + k)$-space and $ {w_1} \in {H^1}({G_k}({{\mathbf{R}}^{n + k}});{{\mathbf{Z}}_2})$ the first Stiefel-Whitney class of the universal bundle. We determine, for many (k, n), the exact height of $ {w_1}$ in the cohomology ring. We also indicate the combinatorial significance of the complex analogue of these computations.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57T15, 55R40, 57R20

Retrieve articles in all journals with MSC: 57T15, 55R40, 57R20

Additional Information

PII: S 0002-9939(1980)0568001-8
Article copyright: © Copyright 1980 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia