Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The cobordism classification of hypersurfaces in lens spaces

Author: J. H. C. Creighton
Journal: Proc. Amer. Math. Soc. 79 (1980), 499-504
MSC: Primary 57R75; Secondary 57R40
MathSciNet review: 568002
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In Theorem A we classify by cobordism type the codimension one submanifolds of lens spaces $ L_d^{2n + 1}$ (quotient of $ {S^{2n + 1}}$ by the action of the dth roots of unity). A related immersion result is also obtained.

References [Enhancements On Off] (What's this?)

  • [1] G. E. Bredon and J. W. Wood, Non-orientable surfaces in orientable 3-manifolds, Invent. Math. 7 (1969), 83-110. MR 0246312 (39:7616)
  • [2] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Academic Press, New York, 1964. MR 0176478 (31:750)
  • [3] J. H. C. Creighton, An elementary proof of the classification of surfaces in real projective 3-space, Proc. Amer. Math. Soc 72 (1978), 191-192. MR 0515780 (58:24297)
  • [4] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton Univ. Press., Princeton, N. J., 1974. MR 0440554 (55:13428)
  • [5] R. Thom, Quelques propriétés globales des variétés differentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 0061823 (15:890a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R75, 57R40

Retrieve articles in all journals with MSC: 57R75, 57R40

Additional Information

Keywords: Cobordism, lens space, manifold, submanifold, immersion, Stiefel-Whitney class
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society