Goldie conditions in finite normalizing extensions

Author:
Charles Lanski

Journal:
Proc. Amer. Math. Soc. **79** (1980), 515-519

MSC:
Primary 16A34; Secondary 16A26

MathSciNet review:
572292

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *S* be a finite normalizing extension of a ring *R*. If *M* is an *S* module, then *M* has finite uniform dimension if and only if it has finite uniform dimension when considered as an *R* module. Consequently, when *S* is a right Goldie ring, *R* is also a right Goldie ring. Conversely, if *R* is a semiprime right Goldie ring and *S* is a prime ring, then *S* is a Goldie ring. Finally, when both *S* and *R* are semiprime right Goldie rings, the quotient ring of *R* embeds in the quotient ring of *S*.

**[1]**Edward Formanek and Arun Vinayak Jategaonkar,*Subrings of Noetherian rings*, Proc. Amer. Math. Soc.**46**(1974), 181–186. MR**0414625**, 10.1090/S0002-9939-1974-0414625-5**[2]**Joe W. Fisher, Charles Lanski, and Jae Keol Park,*Gabriel dimension of finite normalizing extensions*, Comm. Algebra**8**(1980), no. 16, 1493–1503. MR**585202**, 10.1080/00927878008822529**[3]**B. Lemonnier,*Dimension de Krull et codéviation. Application au théorème d’Eakin*, Comm. Algebra**6**(1978), no. 16, 1647–1665 (French). MR**508242**, 10.1080/00927877808822313**[4]**J. C. Robson and Lance W. Small,*Liberal extensions*, Proc. London Math. Soc. (3)**42**(1981), no. 1, 87–103. MR**602124**, 10.1112/plms/s3-42.1.87

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A34,
16A26

Retrieve articles in all journals with MSC: 16A34, 16A26

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1980-0572292-7

Article copyright:
© Copyright 1980
American Mathematical Society