THE ZYGMUND CONDITION FOR BLOCH FUNCTIONS
IN THE BALL IN \mathbb{C}^n

JOSEPH. A. CIMA AND BARNET M. WEINSTOCK

Abstract. In this paper we prove the equivalence of the Bloch condition for a holomorphic function f on the ball B_n with the Zygmund second difference condition for a suitable primitive F of f.

Introduction. If B_1 is the open unit disc in the complex plane and f is holomorphic on B_1, we say that f is a Bloch function if there exists a positive number M such that

$$|f'(z)|(1 - |z|^2) < M$$

for all $z \in B_1$. When equipped with an appropriate norm the linear space of Bloch functions becomes a nonseparable Banach space. There are many equivalent conditions that a function can satisfy to be a Bloch function (see Pommerenke [2] or Cima [1]). In a recent thesis, Richard Timoney [4] has done an exhaustive study of properties of Bloch functions on domains in \mathbb{C}^n. In particular his work includes the theory of Bloch functions on the ball

$$B_n = \{ z \in \mathbb{C}^n : \|z\| = \sqrt{|z|^2} < 1 \}.$$

He has shown that all the known characterizations, save two, that are equivalent for the case of $n = 1$ are valid for $n > 1$. One of these two characterizations is the second difference condition of Zygmund [5]. We will establish the equivalence of this condition for the B_n case.

1. Preliminaries. Assume f is a holomorphic function of $B_n \to \mathbb{C}$. For u and v vectors in \mathbb{C}^n, $z \in B_n$ and $\langle u, v \rangle = \sum_{j=1}^n u_j \bar{v}_j$ the Bergman metric is given by

$$H_z(u, \bar{v}) = \left(\frac{n+1}{2} \right) \frac{(1 - \|z\|^2)\langle u, \bar{v} \rangle + \langle u, \bar{x} \rangle \langle z, \bar{v} \rangle}{(1 - \|z\|^2)^2}.$$

For each $z \in B_n$ define

$$Q_f(z) = \sup \{ |(\nabla_x f)(x)| / H_x(x, \bar{x})^{1/2} ; x \in C^n, x \neq 0 \}$$

where $\langle \nabla_x f \rangle(x) = \sum_{j=1}^n (\partial f / \partial z_j)(x) x_j$.

Received by the editors April 27, 1979 and, in revised form, June 4, 1979; presented to the Society, August 25, 1979.

Key words and phrases. Bloch function, several complex variables, Zygmund condition.

1Partially supported by National Science Foundation Grant MCS78-02912.

© 1980 American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Definition 1. A holomorphic function \(f: B_1 \rightarrow \mathbb{C} \) is called a Bloch function if
\[
\sup \{ \frac{1}{|z|} : z \in B_1 \} < \infty.
\]

In considering this definition, a certain amount of pathology immediately enters. In fact one observes by studying the metric that if \(f \) is a Bloch function, then the growth of its directional derivative in the radial direction is \(O((1 - \|z\|^2)^{-1}) \), whereas the growth in directions orthogonal to the radial direction is only \(O((1 - \|z\|^2)^{-1/2}) \). Timoney \([4]\) shows that the Bloch condition is equivalent to the following condition:
\[
\sup \{ \| \nabla f \| (1 - \|z\|^2) : z \in B_1 \} < \infty. \tag{1.1}
\]

Assume \(F \) is in the ball algebra of \(B_1 \), i.e., \(F \) is continuous on \(\overline{B}_1 \) and holomorphic in \(B_1 \). Further assume that the boundary values of \(F \) satisfy
\[
|F(e^{i(\theta + h)}) + F(e^{i(\theta - h)}) - 2F(e^{i\theta})| < A|h| \tag{1.2}
\]
for all real numbers \(h \) and some positive number \(A \), independent of \(\theta \). In \([5]\) it was shown that a function \(f \), holomorphic on \(B_1 \), satisfies the Bloch condition if and only if its primitive \(F(z) = \int_0^z f(\zeta) \, d\zeta \) is in the ball algebra of \(B_1 \) and satisfies condition (1.2).

We consider in this note \(C^1 \) curves \(\gamma \) mapping \(\mathbb{R} \rightarrow \partial B_1 \) such that \(|\gamma'(t)| = 1 \) for all \(t \). We refer to these as normalized \(C^1 \) curves. With this class of curves in mind we make the following definition.

Definition 1.2. Let \(F \) be in the ball algebra of \(B_1 \). We say that \(F \) satisfies condition \(\Lambda_A(\partial B_n) \) if there exists a positive number \(A \) such that for all normalized \(C^1 \) curves \(\gamma \) in \(B_1 \),
\[
|F(\gamma(t + h)) + F(\gamma(t - h)) - 2F(\gamma(t))| < A|h| (2.1)
\]
for all \(t \) and \(h \) in \(\mathbb{R} \).

Finally, if \(f \) is holomorphic on \(B_n \) with expansion in terms of homogeneous polynomials given by \(f(z) = \sum_{k=0}^{\infty} F_k(z) \) define the radial derivative \(\Re f \) of \(f \) by the formula
\[
\Re f(z) = \sum_{k=1}^{\infty} kF_k(z).
\]

2. The principal result. If we are given a function \(f \) holomorphic on \(B_n \), define a function
\[
F(z) = (\Re f)(z) \equiv \int_0^1 f(tz) \, dt.
\]
One checks that \(\Re (\Re f)(z) = \Re F(z) = f(z) - F(z) \).

Theorem 1. A function \(f \) holomorphic on \(B_n \) is in the Bloch space of \(B_n \) if and only if \(\Re f \) satisfies the \(\Lambda_A(\partial B_n) \) condition.

Proof. Assume first that \(f \) is a Bloch function. For \(a \in \partial B_n \) the slice functions are defined by \(f_\alpha(\lambda) = f(\lambda a) \), \(\lambda \in B_1 \). Since
\[
(\Re f)_\alpha(\lambda) = F_\alpha(\lambda) = \frac{1}{\lambda} \int_0^\lambda f_\alpha(\zeta) \, d\zeta \tag{2.1}
\]
we see that each F_a is in $\Lambda_\alpha(\partial B_1)$. Also each member of the family $\{F_a; a \in \partial B_n\}$ has its oscillation $\omega(F_a, \delta) = O(\delta \log \delta)$, uniformly in a. F can be extended to a function on \overline{B}_n by using the values on the slices. Now with $b \in \partial B_n$, $0 < r < 1$,

$$|F(a) - F(b)| < M(1 - r) \log (1 - r) + |F_a(r) - F_b(r)|.$$

This shows that F is continuous at a and hence is in the ball algebra.

Now fix a normalized C^1 curve γ with range in ∂B_n and let $h > 0$ be given. If $g(t)$ is any function defined on \mathbb{R} set $Fg(t) = g(t + h) - g(t)$. With $r = 1 - h$ we write

$$F(\gamma(t)) = (F(\gamma(t)) - F(\gamma(t))) + (F(\gamma(t)))$$

and show that A^2 of each expression in parentheses is $O(h)$, independent of t. Since $|f(z)| = O(\log(1 - |z|))$ one easily verifies that

$$F(\gamma(t)) - F(\gamma(t)) = (1 - r)f(\gamma(t)) + \int_0^1 (1 - s) \nabla f(\gamma(s)) \cdot \gamma(s) \, ds.$$

The integral in this equality is $O(h)$. Also

$$Fg(\gamma(t)) = \int_0^h \nabla f(\gamma(t)) \cdot \gamma'(t) = O(1)$$

where $\gamma(0) = \gamma(t + p)$. Hence

$$A^2[F(\gamma(t)) - F(\gamma(t))] = O(h)$$

uniformly in t. The expression $A^2F(\gamma(t))$ involves three terms:

$$r \int_0^h (\gamma'(t + p) - \gamma'(t)) \cdot \nabla F(\gamma(t + p)) \, \phi, \quad (2.2)$$

$$r \int_0^h \gamma'(t) \cdot (\nabla F(\gamma(t + p)) - \nabla F(\gamma(t - p))) \, \phi, \quad (2.3)$$

$$r \int_0^h (\gamma'(t) - \gamma'(t - p)) \cdot \nabla F(\gamma(t - p)) \, \phi. \quad (2.4)$$

By the definition

$$\left| \frac{\partial F}{\partial z_j}(\gamma(t)) \right| = r \int_0^1 \nabla f(\gamma(t)) \cdot \gamma'(t) \, du \leq M \cdot |\log h|.$$

Thus, expressions (2.2) and (2.4) are $O(1)$ uniformly in t. Similarly

$$\|\nabla F(\gamma(t)) - \nabla F(\gamma(s))\| = O(\log(1 - r))$$

and hence (2.3) is $O(1)$.

For the converse we observe that for each $0 < \alpha < 1$, the space $\Lambda_\alpha(B_1)$ of functions in the ball algebra with boundary values in the Lip α space contains $\Lambda_* (B_1)$. Further, bounded subsets of Λ_α are bounded in Λ_*. Fix $z = re_1$ in B_n with $\|e_1\| = 1$, $0 < r < 1$, and let $\{e_j\}_{j=1}^n$ be an orthonormal basis for C^n. Let D_j be the derivative in the e_j direction. We can apply a result of Rudin [3] to draw the following conclusions. Since $\{F_w\}$ is a norm-bounded subset of $\Lambda_{1/2}(B_1)$,

$$(\Re F)(z) = O((1 - \|z\|)^{-1/2})$$

and

$$D_j f(z) = O((1 - \|z\|)^{-1}), \quad 2 < j < n.$$
Since \(F_a (r) + (\mathcal{R} F)_a (r) = f_a (r) \) we apply the one variable result to conclude
\[
D_M = D_{f_a} (r) = O((1 - ||z||)^{-1}).
\]
The estimates are uniform.

The referee has pointed out that our proof yields the following equivalences.

Proposition 1. A homomorphic function \(f : B_n \to C \) is a Bloch function if and only if the slice functions \(F_a = (\mathcal{F} f)_a, a \in \partial B_n, \) are uniformly bounded in \(\Lambda (\partial B_1) \).

Proof. From [4] a function \(f : B_n \to C \) is a Bloch function if and only if
\[
\sup_{z \in B_n} |(\mathcal{F} f)(z)|(1 - ||z||^2) < \infty. \tag{2.5}
\]
The functions \((\mathcal{F} f)_a, a \in \partial B_n, \) are uniformly bounded in \(\Lambda (\partial B_1) \) if and only if
\[
\sup_{|z| < 1, a \in \partial B_n} |[(\mathcal{F} f)_a]'' (z)|(1 - |z|^2) < \infty. \tag{2.6}
\]
A computation with (2.1) shows that
\[
[(\mathcal{F} f)_a]'' (z) = \frac{1}{z^2} (\mathcal{F} f)_a (z) - \frac{2}{z} [f_a (z) - (\mathcal{F} f)_a (z)]
\]
\[
= \frac{1}{z^2} (\mathcal{F} f)_a (z) - \frac{2}{z} [(\mathcal{F} f)_a]'' (z).
\]
It is clear that (2.5) and (2.6) are equivalent.

Proposition 2. A holomorphic function \(F : B_n \to C \) is in \(\Lambda (\partial B_n) \) if and only if the slice functions \(F_a, a \in \partial B_n, \) are uniformly bounded in \(\Lambda (\partial B_1) \).

Proof. This follows from Rudin’s result [3] and the proof of Theorem 1.

A comment is in order. If one considers the latter half of the proof of Theorem 1, one sees that \(\mathcal{F} f = F \) is much more smooth on curves \(\gamma (t) \) whose tangents lie in the “complex tangential direction.” However, the function \(f(z) = \log(1 - z_1^2 - z_2^2) \) achieves the proper growth estimate on curves \(\gamma (t) = e^{itw} \) \((||w|| = 1)\) whose tangents lie in the real direction.

References

Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27514.

Department of Mathematics, University of North Carolina, Charlotte, North Carolina 28223.