A remark on complemented subspaces of unitary matrix spaces
Author:
Jonathan Arazy
Journal:
Proc. Amer. Math. Soc. 79 (1980), 601608
MSC:
Primary 47D15; Secondary 46A45
MathSciNet review:
572312
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Theorem A. Let P be a bounded projection in a unitary matrix space . Then either or contains a subspace which is isomorphic to and complemented in .
 [1]
Jonathan
Arazy, On large subspaces of the Schatten 𝑝classes,
Compositio Math. 41 (1980), no. 3, 297–336. MR 589085
(82a:47043)
 [2]
Jonathan
Arazy, Some remarks on interpolation theorems and the boundness of
the triangular projection in unitary matrix spaces, Integral Equations
Operator Theory 1 (1978), no. 4, 453–495. MR 516764
(81k:47056a), http://dx.doi.org/10.1007/BF01682937
 [3]
I.
C. Gohberg and M.
G. Kreĭn, Introduction to the theory of linear
nonselfadjoint operators, Translated from the Russian by A. Feinstein.
Translations of Mathematical Monographs, Vol. 18, American Mathematical
Society, Providence, R.I., 1969. MR 0246142
(39 #7447)
 [4]
M. Hall, Jr., Combinational theory, Blaisdell, Waltham, Mass., 1967.
 [5]
S.
Kwapień and A.
Pełczyński, The main triangle projection in matrix
spaces and its applications., Studia Math. 34 (1970),
43–68. MR
0270118 (42 #5011)
 [6]
Joram
Lindenstrauss and Lior
Tzafriri, Classical Banach spaces, Lecture Notes in
Mathematics, Vol. 338, SpringerVerlag, BerlinNew York, 1973. MR 0415253
(54 #3344)
 [1]
 J. Arazy, On large subspaces of Schatten pclasses, Compositio Math. (to appear). MR 589085 (82a:47043)
 [2]
 , Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), 453495. MR 516764 (81k:47056a)
 [3]
 I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non self adjoint operators, Transl. Math. Mono., vol. 18, Amer. Math. Soc., Providence, R. I., 1969; reprinted 1978. MR 0246142 (39:7447)
 [4]
 M. Hall, Jr., Combinational theory, Blaisdell, Waltham, Mass., 1967.
 [5]
 S. Kwapien and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Stadia Math. 34 (1970), 4368. MR 0270118 (42:5011)
 [6]
 J. Lindenstrauss and L. Tzafriri, Classical Banach spaces 1, sequences spaces, SpringerVerlag, Berlin and New York, 1977. MR 0415253 (54:3344)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
47D15,
46A45
Retrieve articles in all journals
with MSC:
47D15,
46A45
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993919800572312X
PII:
S 00029939(1980)0572312X
Keywords:
Unitary matrix spaces,
symmetric sequence spaces,
compact operators on Hilbert spaces,
complemented subspaces,
spaces
Article copyright:
© Copyright 1980
American Mathematical Society
