Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A remark on complemented subspaces of unitary matrix spaces


Author: Jonathan Arazy
Journal: Proc. Amer. Math. Soc. 79 (1980), 601-608
MSC: Primary 47D15; Secondary 46A45
MathSciNet review: 572312
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Theorem A. Let P be a bounded projection in a unitary matrix space $ {C_E}$. Then either $ P{C_E}$ or $ (I - P){C_E}$ contains a subspace which is isomorphic to $ {C_E}$ and complemented in $ {C_E}$.


References [Enhancements On Off] (What's this?)

  • [1] Jonathan Arazy, On large subspaces of the Schatten 𝑝-classes, Compositio Math. 41 (1980), no. 3, 297–336. MR 589085
  • [2] Jonathan Arazy, Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), no. 4, 453–495. MR 516764, 10.1007/BF01682937
  • [3] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR 0246142
  • [4] M. Hall, Jr., Combinational theory, Blaisdell, Waltham, Mass., 1967.
  • [5] S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications., Studia Math. 34 (1970), 43–68. MR 0270118
  • [6] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D15, 46A45

Retrieve articles in all journals with MSC: 47D15, 46A45


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1980-0572312-X
Keywords: Unitary matrix spaces, symmetric sequence spaces, compact operators on Hilbert spaces, complemented subspaces, $ {C_p}$-spaces
Article copyright: © Copyright 1980 American Mathematical Society