A remark on complemented subspaces of unitary matrix spaces

Author:
Jonathan Arazy

Journal:
Proc. Amer. Math. Soc. **79** (1980), 601-608

MSC:
Primary 47D15; Secondary 46A45

DOI:
https://doi.org/10.1090/S0002-9939-1980-0572312-X

MathSciNet review:
572312

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Theorem A. *Let P be a bounded projection in a unitary matrix space* . *Then either* *or* *contains a subspace which is isomorphic to* *and complemented in* .

**[1]**J. Arazy,*On large subspaces of Schatten p-classes*, Compositio Math. (to appear). MR**589085 (82a:47043)****[2]**-,*Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces*, Integral Equations Operator Theory**1**(1978), 453-495. MR**516764 (81k:47056a)****[3]**I. C. Gohberg and M. G. Krein,*Introduction to the theory of linear non self adjoint operators*, Transl. Math. Mono., vol. 18, Amer. Math. Soc., Providence, R. I., 1969; reprinted 1978. MR**0246142 (39:7447)****[4]**M. Hall, Jr.,*Combinational theory*, Blaisdell, Waltham, Mass., 1967.**[5]**S. Kwapien and A. Pełczyński,*The main triangle projection in matrix spaces and its applications*, Stadia Math.**34**(1970), 43-68. MR**0270118 (42:5011)****[6]**J. Lindenstrauss and L. Tzafriri,*Classical Banach spaces 1, sequences spaces*, Springer-Verlag, Berlin and New York, 1977. MR**0415253 (54:3344)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47D15,
46A45

Retrieve articles in all journals with MSC: 47D15, 46A45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1980-0572312-X

Keywords:
Unitary matrix spaces,
symmetric sequence spaces,
compact operators on Hilbert spaces,
complemented subspaces,
-spaces

Article copyright:
© Copyright 1980
American Mathematical Society