Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On finite groups containing three $ CC$-subgroups


Authors: Zvi Arad and Pamela Ferguson
Journal: Proc. Amer. Math. Soc. 80 (1980), 27-33
MSC: Primary 20D06; Secondary 20C15
DOI: https://doi.org/10.1090/S0002-9939-1980-0574503-0
MathSciNet review: 574503
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A finite group G has a self-centralization system of type $ (2\vert{A_1}\vert,4\vert{A_2}\vert,4\vert{A_3}\vert)$ if G contains three nonconjugate CC-subgroups $ {A_1},{A_2},{A_3}$, such that $ \vert{N_G}({A_1})\vert = 2\vert{A_1}\vert,\vert{N_G}({A_2})\vert = 4\vert{A_2}\vert,\vert{N_G}({A_3})\vert = 4\vert{A_3}\vert$. The authors prove that if a finite group G has a self-centralization system of type $ (2\vert{A_1}\vert,4\vert{A_2}\vert,4\vert{A_3}\vert)$ and $ \vert G\vert \leqslant 3\vert{A_1}{\vert^2}\vert{A_2}{\vert^2}\vert{A_3}{\vert^2}$, then G has a nilpotent normal subgroup N such that G/N is isomorphic to $ Sz(q)$ for suitable q.


References [Enhancements On Off] (What's this?)

  • [1] W. Feit, Characters of finite groups, Benjamin, New York, 1967. MR 0219636 (36:2715)
  • [2] P. Ferguson, On finite simple groups with self-centralization systems of type $ (2(n))$, Proc. Amer. Math. Soc. 72 (1978), 443-444. MR 509231 (80b:20019)
  • [3] L. R. Fletcher, B. Stellmacher and W. B. Stewart, Endliche Gruppen, die kein Element der Ordnung 6 enthalten, Quart J. Math. Oxford Ser. 28 (1977), 143-154. MR 0447394 (56:5706)
  • [4] G. Glauberman, Factorizations in local subgroups of finite groups, CBMS Regional Conf. Ser. Math., no. 33, Amer. Math. Soc., Providence, R. I., 1977. MR 0470072 (57:9839)
  • [5] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 0231903 (38:229)
  • [6] K. Harada, A characterization of groups $ LF(2,q)$, Illinois J. Math. 11 (1967), 647-659. MR 0218443 (36:1529)
  • [7] G. Higman, Odd characterizations of finite simple groups, Lecture Notes, University of Michigan, Ann Arbor, Michigan, 1968.
  • [8] W. B. Stewart, Groups having strongly-self-centralizing 3-centralizers, Proc. London Math. Soc. (3) 26 (1973), 653-680. MR 0325775 (48:4121)
  • [9] M. Suzuki, Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc. 99 (1961), 425-470. MR 0131459 (24:A1309)
  • [10] Y. Usami, A characterization of the Suzuki groups, Natur. Sci. Rep. Ochanomizu Univ. 26 (1975), 13-29. MR 0430059 (55:3066)
  • [11] J. Walther, The characterization of finite groups with Abelian 2-subgroups, Ann. of Math. 89 (1969), 405-514. MR 0249504 (40:2749)
  • [12] J. S. Williams, A sufficient condition on centralizers for a finite group to contain a proper CCT subgroup, J. Algebra 42 (1976), 549-556. MR 0419597 (54:7615)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D06, 20C15

Retrieve articles in all journals with MSC: 20D06, 20C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0574503-0
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society