Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cyclic vectors of weighted shifts on $ l\sp{p}$ spaces


Authors: B. S. Yadav and S. Chatterjee
Journal: Proc. Amer. Math. Soc. 80 (1980), 95-99
MSC: Primary 47B37
DOI: https://doi.org/10.1090/S0002-9939-1980-0574515-7
MathSciNet review: 574515
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Various authors have studied the existence of cyclic vectors of weighted shifts on Banach spaces (Hilbert spaces). In this paper, the existence of cyclic vectors of weighted shifts on $ {l^p}$ Banach spaces is exhibited under suitable conditions on the weight sequence.


References [Enhancements On Off] (What's this?)

  • [1] James A. Deddens, Ralph Gellar and Domingo A. Herrero, Commutants and cyclic vectors, Proc. Amer. Math. Soc. 43 (1974), 169-170. MR 0328643 (48:6985)
  • [2] R. G. Douglas, H. S. Shapiro and A. L. Shields, On cyclic vectors of the backward shift, Bull. Amer. Math. Soc. 73 (1967), 156-159. MR 0203465 (34:3316)
  • [3] -, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970), fasc. 1, 37-76. MR 0270196 (42:5088)
  • [4] R. Gellar, Cyclic vectors and parts of the spectrum of a weighted shift, Trans. Amer. Math. Soc. 146 (1969), 69-85. MR 0259642 (41:4277b)
  • [5] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 0208368 (34:8178)
  • [6] D. A. Herrero, Eigenvectors and cyclic vectors for bilateral weighted shifts, Rev. Un. Mat. Argentina 26 (1972), 26-41. MR 0336395 (49:1170)
  • [7] Edward Kerlin and Alan Lambert, Strictly cyclic shifts on $ {l^p}$, Acta Sci. Math. (Szeged) 35 (1973), 87-94. MR 0328658 (48:7000)
  • [8] N. K. Nikol'skiĭ, The invariant subspaces of certain completely continuous operators, Vestnik Leningrad Univ. (7) 20 (1965), 68-77. (Russian) MR 0185444 (32:2911)
  • [9] -, Invariant subspaces of weighted shift operators, Mat. Sb. (N. S.) 74 (116) (1967), 172-190. MR 0229081 (37:4659)
  • [10] M. Rabindranathan, On cyclic vectors of weighted shifts, Proc. Amer. Math. Soc. 44 (1974), 293-299. MR 0350491 (50:2983)
  • [11] A. Zygmund, Trigonometric series, 2nd ed., Vol. I, Cambridge Univ. Press, New York, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B37

Retrieve articles in all journals with MSC: 47B37


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0574515-7
Keywords: $ {l^p}$ Banach spaces, weighted shift operators, cyclic vectors
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society