£ *(K) AND OTHER LATTICES OF RECURSIVELY ENUMERABLE SETS

RICHARD A. SHORE

Abstract. We study the direct product operation on lattices which are principal filters of \mathcal{S}^*, the lattice of r.e. sets modulo finite sets, to generate new isomorphism types of such filters and to characterize the one generated by the complete r.e. set K.

A major trend in the long term project of analyzing the lattice \mathcal{S} of recursively enumerable sets and \mathcal{S}^* its quotient modulo the finite sets has been the investigation of the class \mathcal{F} of principal filters of \mathcal{S}^*, i.e. of the lattices $\mathcal{L}^*(A) = \{B \in \mathcal{S}^* | B \subseteq A\}$ for r.e. A. (Note that $A \subseteq B$ if $A \triangle B$ is finite.) Of course the principal ideals of \mathcal{S}^* are irrelevant since $\{B \in \mathcal{S}^* | B \subseteq A\} \approx \mathcal{S}$ for every $A \neq \emptyset$. The first such conscious investigations began with Myhill [1956] who defined maximal r.e. sets, i.e. sets M such that $\mathcal{L}^*(M) \approx \{0, 1\}$ (the two element Boolean algebra). Indeed the hyperhypersimple sets of Post [1944], although defined in terms of the intersection of arrays with the sets complement, also turned out to be related to this line of thought. Lachlan [1968] showed that they are precisely the r.e. sets A such that $\mathcal{L}^*(A)$ is a Boolean algebra. He was also able to completely characterize the members of \mathcal{F} which are Boolean algebras as exactly the Σ_3 presentable ones.

At the other extreme one finds the r-maximal sets. These are easily seen to be equivalent to those with $\mathcal{L}^*(A)$ having no complemented elements. Classifying the isomorphism types of the r-maximal sets however seems to be a difficult open problem. The only other commonly recognized principal filter in \mathcal{S}^* is the nearly ubiquitous one \mathcal{S}^* itself. Of course if A is recursive it is immediate that $\mathcal{L}^*(A) \approx \mathcal{S}^*$ but Soare [1974], [1981] has shown that this type is extremely common: If A is an r.e. infinite set and A is semilow (i.e. $\{e | W_e \cap \overline{A} \neq \emptyset\} < \emptyset\}$ then $\mathcal{L}^*(A) \approx \mathcal{S}^*$. This means that there are r.e. sets A in every r.e. degree with $\mathcal{L}^*(A) \approx \mathcal{S}^*$ and all low r.e. sets A (i.e., $A' < \mathcal{T} \emptyset$) have this property.

Our goal here is simply to provide some additional examples of types of principal filters in \mathcal{S}^*. We will do this by describing some simple properties of the direct product of lattices in \mathcal{F}. We will then use it to generate new isomorphism types in \mathcal{F}. In addition these properties will enable us to make one really new identification. We will characterize the isomorphism type of $\mathcal{L}^*(K)$ by an absorption property.

Received by the editors July 23, 1979.

1980 Mathematics Subject Classification. Primary 03D25.

Key words and phrases. Complete sets, lattices of r.e. supersets of r.e. sets, products of lattices.

The preparation of this paper was partially supported by NSF grant MCS 77-04013.
with respect to products in \mathcal{L}. Some connections between the structure of $\mathcal{L} \ast(A)$ and the degree of A will also be pointed out.

Our starting point is a simple fact from lattice theory. We work with distributive lattices with 0 and 1. Basic references are Birkhoff [1948] for lattice theory and Rogers [1967] for recursion theory. An excellent current survey of r.e. sets and degrees is Soare [1978].

Lemma 1. $L_1 \otimes L_2 \cong L$ iff there are x_1 and x_2 in L such that $x_1 \land x_2 = 0$, $x_1 \lor x_2 = 1$ and $L_i \cong L(x_i)$ where $L(x_i) = \{ y \in L \mid y > x_i \}$.

Proof. The idea is just that x_1, x_2 are the images of $\langle 0, 1 \rangle$ and $\langle 1, 0 \rangle$ respectively. See Birkhoff [1948, p. 26].

Our first observation is that S is closed under products. Consider $t \ast(Ax)$ and $\ell \ast(A2)$. Let R be an infinite coinfinite recursive set with complement \bar{R}. We map $f_1: \mathbb{N} \to R, f_2: \mathbb{N} \to \bar{R}$ by one-one onto recursive maps. It is then immediate that $\ell \ast(R \cup f_1[A_1]) \cong \ell \ast(A_1)$ and $\ell \ast(R \cup f_2[A_2]) \cong \ell \ast(A_2)$. Thus

$$\ell \ast(A_1) \otimes \ell \ast(A_2) \cong \ell \ast(R \cup f_1[A_1]) \otimes \ell \ast(R \cup f_2[A_2])$$

but by the lemma this is just $\ell \ast(f_1[A_1] \cup f_2[A_2])$. Note that if A_1 and A_2 are simple so is $f_1[A_1] \cup f_2[A_2]$. Thus the class of principal filters generated by simple sets is also closed under direct product. Of course $\ell \ast(\mathbb{N}) = 1$, the trivial one-element lattice, is an identity for products in \mathcal{F}.

We next consider $S \ast$ and see that it is an indecomposable idempotent.

Corollary 2. $S \ast \otimes S \ast \cong S \ast$.

Proof. Let x_1 and x_2 be given by any infinite coinfinite recursive set and its complement.

Corollary 3. If $L_1 \otimes L_2 \cong S \ast$ then $L_i = 1$ or $S \ast$.

Proof. By the lemma the L_i are isomorphic to $\ell \ast(A_i)$ for $A_1 \cap A_2 = \ast \emptyset$ and $A_1 \cup A_2 = \ast \mathbb{N}$. Thus the A_i are recursive and $\ell \ast(A_i) \cong S \ast$ or 1 (if one is N).

Thus products of $S \ast$ give no new isomorphism types in \mathcal{F} and of course products of Boolean algebras are still Boolean algebras. We can however combine these two known types to generate new ones. We use a more general version of Lemma 1 to prove that one gets new types in this way.

Theorem 4. If $S \ast \otimes L_1 \cong S \ast \otimes L_2$ then $L_1 \cong L_2$ or $L_1 \cong S \ast \otimes L_2$ or $L_2 \cong S \ast \otimes L_1$.

Proof. By Theorem 7 on p. 26 of Birkhoff [1948] there are lattices Z_1, Z_2, Z_1^2, Z_2^2 such that $Z_1 \otimes Z_1^2 \cong S \ast$, $Z_1 \otimes Z_2 \cong S \ast$, $Z_2 \otimes Z_2^2 \cong L_1$ and $Z_1 \otimes Z_2^2 \cong L_2$. By Corollary 3, Z_1, Z_2 and Z_1^2, Z_2^2 are 1 or $S \ast$. If $Z_1 \cong 1$ then $Z_2 \cong S \ast \otimes Z_2^2$ and so $L_1 \cong S \ast \otimes Z_2^2 \cong L_2$ as required. Suppose now that $Z_1 \cong S \ast$. If $Z_2 \cong Z_2^2$ ($\cong 1$ or $S \ast$) then again $L_1 \cong L_2$ ($\cong Z_2^2$ or $S \ast \otimes Z_2^2$ respectively). The remaining cases are $(Z_2 \cong 1 \& Z_2^2 \cong S \ast)$ and $(Z_2 \cong S \ast \otimes Z_1 \cong 1)$. In the first case $L_1 \cong Z_2^2$ and $L_2 \cong S \ast \otimes Z_2^2$ as required. The second of course gives $L_2 \cong Z_2^2$ and $L_1 \cong S \ast \otimes Z_2^2$. □
Corollary 5. If $\mathfrak{B}_1 \cong \mathfrak{B}_2$ are Boolean algebras in \mathfrak{T} then $\mathbb{E}^* \otimes \mathfrak{B}_1$ and $\mathbb{E}^* \otimes \mathfrak{B}_2$ are nonisomorphic elements of \mathfrak{T}. Neither is a Boolean algebra or \mathbb{E}^* but both are isomorphic to principal filters generated by simple sets.

Proof. As \mathbb{E}^* is not a Boolean algebra $\mathfrak{B}_i \cong \mathbb{E}^* \otimes \mathfrak{B}_i$ and we apply the theorem. As there is a simple set A with $\mathbb{E}^*(A) \equiv \mathbb{E}^*$ the $\mathbb{E}^* \otimes \mathfrak{B}_i$ are isomorphic to principal filters generated by simple sets by the closure of this class under direct product.

We next want to point out a simple relation between products of elements of \mathfrak{F} and the degrees of the r.e. sets to which they correspond.

Lemma 6. If $\mathbb{E}^*(A) \equiv \mathbb{E}^*(A_1) \otimes \mathbb{E}^*(A_2)$ then there are B_i with $\mathbb{E}^*(B_i) \equiv \mathbb{E}^*(A_i)$ and $B_1 \oplus B_2 \equiv_T A$.

Proof. The elements of $\mathbb{E}^*(A)$ guaranteed by our basic lemma are now r.e. sets B_1 and B_2 with $B_1 \cap B_2 = A$, $B_1 \cup B_2 = N$ and $\mathbb{E}^*(B_i) \equiv \mathbb{E}^*(A_i)$. To see if $x \in B_i$ ask if $x \in A$. If so, $x \in B_i$. If not, enumerate both B_1 and B_2 until x appears in one of them. If it first appears in B_1, $x \in B_1$ and otherwise $x \not\in B_i$. Of course $x \in A$ iff $x \in B_1$ and $x \in B_2$.

Thus restrictions on $\mathbb{E}^*(A)$ that push the degree of A upward are passed on by products. So we have for example

Corollary 7. If $\mathfrak{B} \not\equiv 1$ is a Boolean algebra and $\mathbb{E}^*(A) \equiv \mathbb{E}^* \otimes \mathfrak{B}$ then A is high i.e. $\mathfrak{D}^\prime \equiv_T A'$.

Proof. By Lachlan [1968] any B with $\mathbb{E}^*(B) \equiv \mathfrak{B}$ is hyperhypersimple. Martin [1966] then shows that B must be high.

Carrying this idea to an extreme one might guess that the most complicated sets A should have $\mathbb{E}^*(A)$'s with the most factors. Indeed this gives us our characterization of $\mathbb{E}^*(K)$. ($K = \{e | e \in W_e\}$ is of course a 1-complete r.e. set and so in many ways the most complicated one.)

Theorem 8. $\mathbb{E}^*(K) \equiv \mathbb{E}^*(K) \otimes \mathbb{E}^*(A)$ for every r.e. A.

Proof. Let R_1, f_1 and f_2 be as in the proof that \mathfrak{T} is closed under products following Lemma 1. As before we see that $\mathbb{E}^*(K) \otimes \mathbb{E}^*(A) \equiv \mathbb{E}^*(f_1[K] \cup f_2[A])$. As f_1 is a recursive one-one and onto map of N to a recursive set $R,f_1[K]$ is also a complete set as is $f_1[K] \cup f_2[A]$. Thus by Myhill [1955] K and $f_1[K] \cup f_2[A]$ are recursively isomorphic and so

$$\mathbb{E}^*(K) \equiv \mathbb{E}^*(f_1[K] \cup f_2[A]) \equiv \mathbb{E}^*(K) \otimes \mathbb{E}^*(A)$$

as required. □

This theorem characterizes the isomorphism type of $\mathbb{E}^*(K)$ for if $\mathbb{E}^*(B) \equiv \mathbb{E}^*(B) \otimes \mathbb{E}^*(A)$ for every A then $\mathbb{E}^*(B) \equiv \mathbb{E}^*(B) \otimes \mathbb{E}^*(K) \equiv \mathbb{E}^*(K)$. Moreover our earlier results show that the type of $\mathbb{E}^*(K)$ is not any of the ones considered before, i.e., it is not generated as a product of lattices which are Boolean algebras or \mathbb{E}^*. Finally our results on degrees show that if $\mathbb{E}^*(K) \equiv \mathbb{E}^*(A)$ then A is high.
BIBLIOGRAPHY

——— [1956], *The lattice of recursively enumerable sets*, J. Symbolic Logic 21, 220.

——— [1981], *Automorphisms of the lattice of recursively enumerable sets*, Part II: Low sets (to appear).

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853