SHAPE EQUIVALENCE DOES NOT IMPLY CE EQUIVALENCE

STEVE FERRY

Abstract. We give an example of shape equivalent compacta X and Y such that there is no compactum Z with cell-like maps $Z \to X$ and $Z \to Y$.

A space X is said to be cell-like if for some imbedding of X in an ANR, X has the property that for each neighborhood U of X, X contracts to a point in U. This is an intrinsic property of X and is independent of the choice of ANR and embedding. A continuous map $f: Z \to Y$ between compacta is said to be cell-like (CE) if f is surjective and $f^{-1}(y)$ is cell-like for each $y \in Y$. If X and Y are compacta, we say that X and Y are CE equivalent if there exist compacta $X = X_0, X_1, \ldots, X_{2k} = Y$ and CE maps $f_{2i}: X_{2i+1} \to X_{2i}$ and $f_{2i+1}: X_{2i+1} \to X_{2i+2}$ for $i = 0, 1, \ldots, k - 1$.

In [F1] it is shown that two compacta which are homotopy equivalent must be CE equivalent. In fact, more is shown. The maps constructed have sections and contractible point-inverses. It is natural to seek a Čech analog of this theorem for general compacta. Thus, we are led to study the question: "If X and Y are shape equivalent compacta, must X and Y be CE equivalent?"

In this note we will exhibit a simple example which shows that this is not the case. Let X be a plane compactum which is the union of a circle C and a ray R.
which spirals into C. See Figure 1. X is shape equivalent to S^1. We will show that X
is not CE equivalent to S^1.

Definition 1. We will say that a compactum Z is an acyclic image if there exist a
compactum W with $\tilde{H}^*(W) = \tilde{H}^*(\text{pt})$ and a continuous surjection $f: W \to Z$.

Lemma 1. Let P and Q be CE equivalent compacta. Then P is an acyclic image if
and only if Q is an acyclic image.

Proof. It suffices to consider the case in which there is a CE map $r: P \to Q$. It is
clear that Q is an acyclic image if P is an acyclic image. Suppose, then, that Q is an
acyclic image. Let $f: W \to Q$ be a surjection as in Definition 1 and let E be the
pullback in the diagram below.

$$
\begin{array}{ccc}
E & \xrightarrow{j} & P \\
\downarrow \text{CE} & & \downarrow \text{CE} \\
W & \xrightarrow{f} & Q
\end{array}
$$

E is compact, \tilde{j} is surjective, and \tilde{r} is CE. A cell-like set has the Čech cohomology
of a point, so the Vietoris-Begle theorem [S] implies that \tilde{r} induces an isomorphism
of Čech cohomology. Thus, E has the Čech cohomology of a point and P is an
acyclic image. □

Lemma 2. The space X of Figure 1 is not an acyclic image.

Proof. Suppose not. Let $f: W \to X$ be a surjection as in Definition 1. Let $r: X \to C$ be a radial retraction and let $e: E^1 \to C$ be the universal cover. Since
$\tilde{H}^1(W) \cong [W, C] = 0$, the composition $r \circ f: W \to C$ lifts to E^1 and there is a map
$\tilde{f}: W \to E^1$ such that $e \circ \tilde{f} = r \circ f$.

Let $W' = f^{-1}(R)$. Choose a map $\tilde{r}: R \to E^1$ so that $e \circ \tilde{r} = r|_R$ and so that
$\tilde{r} \circ f = \tilde{f}$ for some point $w_0 \in W'$. Let $W'' = \{w \in W' | \tilde{r} \circ f(w) = \tilde{f}(w)\}$. The usual argument shows that W'' is open in W' and therefore in W. W'' cannot be closed in W since W is connected and W'' is neither empty nor all of W.

There is therefore a sequence $\{w_i\} \subseteq W''$ converging to a point $w^* \in W - W''$. Thus, $\lim f(w_i) \in C$ and $\{\tilde{r} \circ f(w_i)\}$ is unbounded in E^1. On the other hand, $\{\tilde{r} \circ f(w_i)\} = \{\tilde{f}(w_i)\} \subseteq \tilde{f}(W')$, which is compact. This is the desired contradiction. □

This completes the proof of our main result, since there is a continuous map of
$[0, 1]$ onto S^1.

2 Lemma 2 is essentially Theorem 1 of M. K. Fort [F0].

It would be interesting to find shape equivalent UV1 compacta which are not CE equivalent. Parts of
[F3] are relevant to this problem.
References

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506