Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Weyl group actions and equivariant homotopy equivalence


Author: Katsuo Kawakubo
Journal: Proc. Amer. Math. Soc. 80 (1980), 172-176
MSC: Primary 57S15; Secondary 55Q50
MathSciNet review: 574530
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a compact Lie group and $ {G_0}$ its identity component. Then we shall show that the normal representations of the corresponding fixed point components of G-homotopy equivalent manifolds are necessarily isomorphic when $ G/{G_0}$ is a Weyl group of a compact connected Lie group.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, On the groups 𝐽(𝑋). I, Topology 2 (1963), 181–195. MR 0159336
  • [2] M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291–310. MR 0131880
  • [3] M. F. Atiyah and G. B. Segal, Equivariant K-theory, University of Warwick, 1965 (mimeographed note).
  • [4] M. F. Atiyah and D. O. Tall, Group representations, 𝜆-rings and the 𝐽-homomorphism, Topology 8 (1969), 253–297. MR 0244387
  • [5] Mark Benard, On the Schur indices of characters of the exceptional Weyl groups, Ann. of Math. (2) 94 (1971), 89–107. MR 0297887
  • [6] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979
  • [7] Katsuo Kawakubo, 𝐺-homotopy equivalent manifolds and 𝐽_{𝐺}-homomorphism, Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), no. 4, 104–106. MR 0482762
  • [8] Katsuo Kawakubo, Compact Lie group actions and fiber homotopy type, J. Math. Soc. Japan 33 (1981), no. 2, 295–321. MR 607946, 10.2969/jmsj/03320295
  • [9] Katsuo Kawakubo, Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan 32 (1980), no. 1, 105–118. MR 554519, 10.2969/jmsj/03210105
  • [10] -, Cancellation law for G-homotopy equivalent representations (to appear).
  • [11] Takeshi Kondo, The characters of the Weyl group of type 𝐹₄, J. Fac. Sci. Univ. Tokyo Sect. I 11 (1965), 145–153 (1965). MR 0185018
  • [12] Chung Nim Lee and Arthur G. Wasserman, On the groups 𝐽𝑂(𝐺), Mem. Amer. Math. Soc. 2 (1975), no. issue 1, 159, ii+62. MR 0370581
  • [13] Reinhard Schultz, On the topological classification of linear representations, Topology 16 (1977), no. 3, 263–269. MR 0500964
  • [14] J. P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1971.
  • [15] W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Schr. Math. Sem. Berlin 1 (1932), 1-32.
  • [16] Paweł Traczyk, On the 𝐺-homotopy equivalence of spheres of representations, Math. Z. 161 (1978), no. 3, 257–261. MR 0494094
  • [17] A. Young, Quantitative substitutional analysis. IV, V, Proc. London Math. Soc. (2) 31 (1930), 253-272; 273-288.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57S15, 55Q50

Retrieve articles in all journals with MSC: 57S15, 55Q50


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1980-0574530-3
Keywords: Compact Lie groups, equivariant J-homomorphism, Weyl groups, equivariant homotopy equivalence
Article copyright: © Copyright 1980 American Mathematical Society