Polynomial group laws. II

Author:
Zensho Nakao

Journal:
Proc. Amer. Math. Soc. **80** (1980), 196-200

MSC:
Primary 14L17; Secondary 20G15

MathSciNet review:
577743

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *V* be a Zariski-open (i.e., cofinite) subset of an infinite field *K*. Call a map separately polynomial if for each the two partial maps are polynomial. If is a separately polynomial group law, then either and for some or and for some and .

**[M]**Andy R. Magid,*Separately algebraic group laws*, Amer. J. Math.**100**(1978), no. 2, 407–409. MR**489964**, 10.2307/2373855**[N1]**Zensho Nakao,*Bi-algebraic groups*, J. Algebra**57**(1979), no. 1, 1–9. MR**533097**, 10.1016/0021-8693(79)90205-9**[N2]**Zensho Nakao,*Polynomial group laws*, Amer. Math. Monthly**87**(1980), no. 9, 735–736. MR**602832**, 10.2307/2321864**[P]**Richard S. Palais,*Some analogues of Hartogs’ theorem in an algebraic setting*, Amer. J. Math.**100**(1978), no. 2, 387–405. MR**0480509**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
14L17,
20G15

Retrieve articles in all journals with MSC: 14L17, 20G15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1980-0577743-X

Keywords:
Separately polynomial group laws

Article copyright:
© Copyright 1980
American Mathematical Society