Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On openness of $ H\sb{n}$-locus and semicontinuity of $ n$th deviation

Author: Alfio Ragusa
Journal: Proc. Amer. Math. Soc. 80 (1980), 201-209
MSC: Primary 13D03; Secondary 13H10
MathSciNet review: 577744
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: M. André has used the property $ {H_n}$, namely the vanishing of certain homology groups, and the deviation $ {\delta _n}$ to characterize some classes of rings. In the present paper the author establishes an inequality on the deviations and obtains a Nagata criterion for $ {H_n}$-locus and its openness for quotients of complete intersection rings and excellent rings. The upper-semicontinuity for $ {\delta _n}$ is also proved for the same classes of rings.

References [Enhancements On Off] (What's this?)

  • [A$ _{1}$] Michel André, Homologie des algèbres commutatives, Springer-Verlag, Berlin-New York, 1974 (French). Die Grundlehren der mathematischen Wissenschaften, Band 206. MR 0352220
  • [A$ _{2}$] Michel André, Méthode simpliciale en algèbre homologique et algèbre commutative, Lecture Notes in Mathematics, Vol. 32, Springer-Verlag, Berlin-New York, 1967 (French). MR 0214644
  • [Av] L. L. Avramov, Flat morphisms of complete intersections, Dokl. Akad. Nauk SSSR 225 (1975), no. 1, 11–14 (Russian). MR 0396558
  • [B] N. Bourbaki, Éléments de mathématique. Fascicule XXVIII. Algèbre commutative. Chapitre 3: Graduations, filtra- tions et topologies. Chapitre 4: Idéaux premiers associés et décomposition primaire, Actualités Scientifiques et Industrielles, No. 1293, Hermann, Paris, 1961 (French). MR 0171800
  • [G-L] Tor H. Gulliksen and Gerson Levin, Homology of local rings, Queen’s Paper in Pure and Applied Mathematics, No. 20, Queen’s University, Kingston, Ont., 1969. MR 0262227
  • [G-M] S. Greco and M. G. Marinari, Nagata's criterion and openness of loci for Gorenstein and complete intersection (preprint).
  • [K] Ernst Kunz, Almost complete intersections are not Gorenstein rings, J. Algebra 28 (1974), 111–115. MR 0330158,
  • [M] Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13D03, 13H10

Retrieve articles in all journals with MSC: 13D03, 13H10

Additional Information

Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society