Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Morita equivalent semigroups of quotients

Author: John K. Luedeman
Journal: Proc. Amer. Math. Soc. 80 (1980), 219-222
MSC: Primary 20M20; Secondary 20M50
MathSciNet review: 577747
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let S be a monoid and $ _SM$ and $ _SN$ be retracts of each other. We show that $ {\text{End}_S}(M)$ and $ {\text{End}_S}(N)$ are Morita equivalent. Using this result, we show that if A and B are Morita equivalent monoids, then their semigroups of quotients are Morita equivalent.

References [Enhancements On Off] (What's this?)

  • [1] B. Banaschewski, Functors into categories of M-sets, Abh. Math. Sem. Univ. Hamburg 8 (1972), 49-64. MR 0310035 (46:9138)
  • [2] K. Hirata, Some types of separable extensions of rings, Nagoya Math. J. 33 (1968), 107-115. MR 0236226 (38:4524)
  • [3] U. Knauer, Projectivity of acts and Morita equivalence of monoids, Semigroup Forum 3 (1972), 359-370. MR 0286914 (44:4121)
  • [4] J. Luedeman, Torsion theories and semigroups of quotients, Tech. Rep. 297, Clemson University, Clemson, S. C.
  • [5] B. Pareigis, Categories and functors, Academic Press, New York, 1970. MR 0265428 (42:337b)
  • [6] D. Turnidge, Torsion theories and rings of quotients of Morita equivalent rings, Pacific J. Math. 37 (1971), 225-234. MR 0309985 (46:9088)
  • [7] H. J. Weinert, On S-sets and semigroups of quotients, Semigroup Forum 19 (1980), 1-78. MR 558512 (81d:20062)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20M20, 20M50

Retrieve articles in all journals with MSC: 20M20, 20M50

Additional Information

Keywords: Semigroup of quotients, Morita equivalence
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society