Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Boundary convergence and boundary limits of Blaschke products


Author: C. N. Linden
Journal: Proc. Amer. Math. Soc. 80 (1980), 287-292
MSC: Primary 30D50
DOI: https://doi.org/10.1090/S0002-9939-1980-0577761-1
MathSciNet review: 577761
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a given countable subset $ \gamma $ of the unit circle, a method is given for the construction of Blaschke products $ B(z,A)$ which converge at all points of $ \gamma $ and which, for each point $ {e^{i\varphi }}$ of $ \gamma $, either (a) have no asymptotic value at $ {e^{i\varphi }}$ or (b) have an asymptotic value at $ {e^{i\varphi }}$ not equal to $ B({e^{i\varphi }},A)$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D50

Retrieve articles in all journals with MSC: 30D50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0577761-1
Article copyright: © Copyright 1980 American Mathematical Society