Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A direct proof that the RC-integral is equivalent to the $ D\sp{\ast} $-integral


Author: Yôto Kubota
Journal: Proc. Amer. Math. Soc. 80 (1980), 293-296
MSC: Primary 26A39
DOI: https://doi.org/10.1090/S0002-9939-1980-0577762-3
MathSciNet review: 577762
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a direct and short proof that the Riemann complete integral defined by R. Henstock is equivalent to the special Denjoy integral.


References [Enhancements On Off] (What's this?)

  • [1] R. O. Davies and Z. Schuss, A proof that Henstock's integral includes Lebesgue's, J. London Math. Soc. (2) 2 (1970), 561-562. MR 0265526 (42:435)
  • [2] R. Henstock, A new descriptive definition of the Ward integral, J. London Math. Soc. 35 (1960), 43-48. MR 0110780 (22:1648)
  • [3] -, Theory of integration, Butterworths, London, 1963. MR 0158047 (28:1274)
  • [4] -, A Riemann-type integral of Lebesgue power, Canad. J. Math. 20 (1968), 79-87. MR 0219675 (36:2754)
  • [5] S. Saks, Theory of the integral, 2nd rev. ed., Dover, New York, 1964. MR 0167578 (29:4850)
  • [6] A. J. Ward, The Perron-Stieltjes integral, Math. Z. 41 (1936), 578-604. MR 1545641

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A39

Retrieve articles in all journals with MSC: 26A39


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0577762-3
Keywords: Riemann complete integral, special Denjoy integral, regular interval
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society