Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On $ S$-closed spaces


Authors: James E. Joseph and Myung H. Kwack
Journal: Proc. Amer. Math. Soc. 80 (1980), 341-348
MSC: Primary 54D20; Secondary 54D25
DOI: https://doi.org/10.1090/S0002-9939-1980-0577771-4
MathSciNet review: 577771
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we initially give several new characterizations of the class of S-closed spaces, which was introduced by T. Thompson [Proc. Amer. Math. Soc. 60 (1976), 335-338]. We then employ these characterizations to produce analogues for S-closed spaces of the well-known theorem from real analysis that an upper-semicontinuous real-valued function on a closed interval assumes a maximum, and of two well-known theorems of G. Birkhoff and A. D. Wallace, which established that each upper-semicontinuous function from a compact space into a partially ordered set assumes a maximal value and that each compact space has a maximal element with respect to each upper-semicontinuous quasi order on the set. The statements in these latter analogues are then shown to characterize S-closed spaces. A ``fixed set theorem'' for multifunctions on S-closed spaces is also established.


References [Enhancements On Off] (What's this?)

  • [A-U] P. Alexandroff and P. Urysohn, Zur Theorie der topologischen Räume, Math. Ann. 92 (1924), 258-266. MR 1512213
  • [B] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., no. 25, Amer. Math. Soc., Providence, R. I., 1948. MR 0029876 (10:673a)
  • [C] D. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc. 72 (1978), 581-586. MR 0514999 (58:24188)
  • [Ce] J. Ceder, Compactness and semicontinuous carriers, Proc. Amer. Math. Soc. 14 (1963), 991-993. MR 0155288 (27:5223)
  • [C-H$ _{1}$] S. G. Crossley and S. K. Hildebrand, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci. 22 (1971), 123-126.
  • [C-H$ _{2}$] -, Semi-topological properties, Fund. Math. 74 (1972), 233-254. MR 0301690 (46:846)
  • [F] S. Franklin, Compactness and semi-continuity, Israel J. Math. 3 (1965), 13-14. MR 0184195 (32:1668)
  • [H$ _{1}$] R. Herrmann, RC-convergence (preprint).
  • [H$ _{2}$] -, A nonstandard approach to S-closed spaces, Proc. Amer. Math. Soc. 75 (1979), 311-317.
  • [H-L$ _{1}$] L. L. Herrington and P. E. Long, Characterizations of H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), 469-475. MR 0365485 (51:1737)
  • [H-L$ _{2}$] -, A characterization of minimal Hausdorff spaces, Proc. Amer. Math. Soc. 57 (1976), 373-374. MR 0405355 (53:9149)
  • [J$ _{1}$] J. Joseph, More characterizations of H-closed spaces, Proc. Amer. Math. Soc. 63 (1977), 160-164. MR 0438288 (55:11206)
  • [J$ _{2}$] -, Characterizations of minimal Hausdorff spaces, Proc. Amer. Math. Soc. 61 (1976), 145-148. MR 0425903 (54:13853)
  • [J$ _{3}$] -, On Urysohn-closed and minimal Urysohn spaces, Proc. Amer. Math. Soc. 68 (1978), 235-242. MR 0487974 (58:7553)
  • [K] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 0070144 (16:1136c)
  • [L] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41. MR 0166752 (29:4025)
  • [S-S] C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131-147. MR 0203679 (34:3528)
  • [T$ _{1}$] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60 (1976), 335-338. MR 0425899 (54:13849)
  • [T$ _{2}$] -, Semicontinuous and irresolute images of S-closed spaces, Proc. Amer. Math. Soc. 66 (1977), 359-362. MR 0451193 (56:9480)
  • [W] A. D. Wallace, A fixed point theorem, Bull. Amer. Math. Soc. 51 (1945), 413-416. MR 0012221 (6:278a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D20, 54D25

Retrieve articles in all journals with MSC: 54D20, 54D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0577771-4
Keywords: S-closed, regular-closed, semiopen, quasi order, partial order, upper- (lower-) semicontinuity, maximal and minimal elements
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society