Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The homotopy Thom class of a spherical fibration


Authors: Howard J. Marcum and Duane Randall
Journal: Proc. Amer. Math. Soc. 80 (1980), 353-358
MSC: Primary 55R05; Secondary 55Q15, 57R20
DOI: https://doi.org/10.1090/S0002-9939-1980-0577773-8
MathSciNet review: 577773
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the following problems. Given a spherical fibration, does the Whitehead square of its homotopy Thorn class vanish? If so, is the homotopy Thom class a cyclic homotopy class?


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams and M. F. Atiyah, K-theory and the Hopf invariant, Quart. J. Math. Oxford Ser. 17 (1966), 31-38. MR 0198460 (33:6618)
  • [2] M. F. Ayitah and J. L. Dupont, Vector fields with finite singularities, Acta Math. 128 (1972), 1-40. MR 0451256 (56:9543)
  • [3] E. H. Brown and F. P. Peterson, Whitehead products and cohomology operations, Quart. J. Math. Oxford Ser. 15 (1964), 116-120. MR 0161341 (28:4549)
  • [4] W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157-186. MR 0251736 (40:4963)
  • [5] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. MR 0275424 (43:1181)
  • [6] -, Witnesses, transgressions, and the evaluation map, Indiana Univ. Math. J. 24 (1975), 825-836. MR 0377874 (51:14043)
  • [7] M. E. Mahowald and F. P. Peterson, Secondary cohomology operations on the Thom class, Topology 2 (1963), 367-377. MR 0157378 (28:612)
  • [8] M. E. Mahowald, The index of a tangent 2-field, Pacific J. Math. 58 (1975), 539-548. MR 0385883 (52:6742)
  • [9] R. James Milgram (Editor), Algebraic and geometric topology, Proc. Sympos. Pure Math., vol. 32, Part 2, Amer. Math. Soc., Providence, R.I., 1978. MR 520495 (80e:57037)
  • [10] E. Thomas, The span of a manifold, Quart. J. Math. Oxford Ser. 19 (1968), 225-244. MR 0234487 (38:2804)
  • [11] -, On functional cup-products and the transgression operator, Arch. Math. 12 (1961), 435-444. MR 0149485 (26:6972)
  • [12] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, no. 49, Princeton Univ. Press, Princeton, N.J., 1962. MR 0143217 (26:777)
  • [13] J. C. Wood, A theorem on injectivity of the cup product, Proc. Amer. Math. Soc. 37 (1973), 301-304. MR 0307239 (46:6359)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55R05, 55Q15, 57R20

Retrieve articles in all journals with MSC: 55R05, 55Q15, 57R20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0577773-8
Keywords: Spherical fibration, Whitehead square, cyclic homotopy class, span of a manifold, immersion
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society