SPECIAL HANDLEBODY DECOMPOSITIONS OF SIMPLY-CONNECTED ALGEBRAIC SURFACES

RICHARD MANDELBAUM

Abstract. In this article we prove that any nonsingular complete-intersection surface admits a handlebody decomposition with no 1- and 3-handles. This generalizes results of Rudolph, Harer and Akbuluf on hypersurfaces of \mathbf{CP}^3.

Introduction. Among the problems posed at the Stanford Conference (24th Summer Research Institute, August, 1976) is the following [K, Preliminary List].

Problem 50 (Kirby). Does every simply-connected closed 4-manifold have a handlebody decomposition without 1-handles? Without 1- and 3-handles?

Rudolph [R] shows that any nonsingular hypersurface of \mathbf{CP}^3 has a handlebody decomposition without 1-handles (or dually, without 3-handles), however, Rudolph's method does not allow one to eliminate both 1- and 3-handles simultaneously. In December, 1976, at a lecture at the Institute for Advanced Study, Kirby exhibited a handlebody decomposition of the Kummer surface without both 1- and 3-handles. See [HKK].

The Kummer surface is diffeomorphic to a nonsingular quartic in \mathbf{CP}^3 and we sketch here the following generalization of the [HKK] result exhibited by Kirby.

Theorem. Suppose X is a nonsingular complete intersection of k distinct hypersurfaces V_1, \ldots, V_k in \mathbf{CP}^{k+2}. Then X has a handlebody decomposition without 1- and 3-handles.

1. Lefschetz fibrations.

Definition. Let V be an algebraic surface and suppose L is a pencil of curves on V. Then we shall say L is a Lefschetz pencil if and only if

1. the generic element of L is nonsingular and irreducible.

2. L has only a finite number of singular elements, each of which has only one ordinary double point as its singularity.

We recall [W], [Z] that every algebraic surface admits Lefschetz pencils. (For more details on Lefschetz pencils see especially [AF], [W].)

Furthermore the Lefschetz pencil L gives rise to a rational map f of V to \mathbf{CP}^1. If this map is a morphism $f: V \to \mathbf{CP}^1$ we shall call L a Lefschetz fibration. It is clear that every Lefschetz pencil on V gives rise to a Lefschetz fibration $\tilde{f}: \tilde{V} \to \mathbf{CP}^1$ of $\tilde{V} = \{ V \text{ blown up at the base points of } L \}$ onto \mathbf{CP}^1. (See [AF].)
Now suppose $f: V \to \mathbb{C}P^1$ is a Lefschetz fibration and suppose $a_1, \ldots, a_n \in \mathbb{C}P^1 - \{0, \infty\}$ are its critical values. Then for an appropriate choice of paths λ_i in $\mathbb{C}P^1$ connecting 0 to a_i we can define as in [Z, p. 135], [MM1] Lefschetz vanishing cycles δ_i on $V_0 = f^{-1}(0)$ and Lefschetz relative cycles $\Delta_i \subset f^{-1}(\lambda_i) \subset V$.

We have the following theorem [AF] relating the topology of V and V_0.

Theorem 1. Let $V_\infty = f^{-1}(\infty)$. Then $V - V_\infty$ has the homotopy type of V_0 with n 2-discs Δ_i attached along the δ_i.

In fact it is easy to see that we have a handlebody description of V by means of its decomposition into V_0, the Δ_i, V_∞.

We now formulate:

Definition. Let $f: V \to \mathbb{C}P^1$ be a Lefschetz fibration and suppose that the generic fiber of f has genus g. Suppose further there exist a system of paths in $\mathbb{C}P^1$ such that we can define Lefschetz vanishing and relative cycles δ_i on V_0, Δ_i in V with the following property.

Property W. There exists a subsystem $\delta_1, \ldots, \delta_{2g}$ of Lefschetz vanishing cycles such that $B = \bigcup_i^{2g} \delta_i$ is a bouquet of $2g$ circles with $V_0 - B$ homeomorphic to a 2-disc.

Then we shall call $f: V \to \mathbb{C}P^1$ an exceptional Lefschetz fibration. We note the following result from [Wb].

Theorem 2. Let n_0, n_1, \ldots, n_k be positive integers. There exists an algebraic curve $V_0 \subset \mathbb{C}P^2$ of degree $n = \prod_i^{k} n_i$ such that

1. V_0 has $n_0 \cdot n_1 \cdot \ldots \cdot n_i \cdot (n_i + 1)$ ordinary singular points of order $n_{i+1} \cdot n_{i+2}$ for $i = 0, 1, \ldots, k - 1$ and no other singular points.

2. There exist closed discs D_1, D_2, \ldots, D_{2g} in $\mathbb{C}P^2$ (where g denotes the genus of V_0), such that $D_i \cap V_0 = \partial D_i$ and $D_i \cap D_j = P$ for $i \neq j$ (where P is a fixed point on V_0), and D_i does not meet singular points of V_0, $i = 1, 2, \ldots, 2g$.

3. Let $\mathbb{C}P^2$ be $\mathbb{C}P^2$ blown up by σ-processes at the singular points of V_0. Let \tilde{A} denote the proper image of A on $\mathbb{C}P^2$ for any $A \subset \mathbb{C}P^2$. Then the bouquet of 1-spheres $\tilde{M} = \bigcup_i^{2g} \tilde{\partial}D_i$ generates the fundamental group $\pi_1(\tilde{V}_0, \tilde{P})$ and its complement $\tilde{V}_0 - \tilde{M}$ is homeomorphic to an open disc.

We note that the proof of Theorem 2 actually implies

Proposition 3. Let V be a nonsingular complete intersection surface in some projective space \mathbb{P}^N. Let H_V be a hyperplane section of V and suppose $H_V^2 = m$. Then for every integer n there exists an exceptional Lefschetz fibration $f_n: V_n \to \mathbb{C}P^1$ of $V'_n = V$ blown up at mn^2 points, with fiber the proper transform of a hypersurface section of V of degree n.

2. Handlebody decompositions.

Definition. Suppose $f_1: V_1 \to S^2$, $f_2: V_2 \to S^2$ are Lefschetz fibrations of curves of genus g.

Let a_1, a_2 be regular values of f_1, f_2 resp. and let D_1, D_2 be discs around a_1, a_2 not containing any critical values.
Let $h: \partial D_1 \to \partial D_2$ be an orientation reversing diffeomorphism and identifying $f_i^{-1}(D_i)$ with $D_i \times F$ for $i = 1, 2$ (where F is a nonsingular curve of genus g) extend h to $g: f_1^{-1}(D_2) \to f_2^{-1}(D_2)$ by the identity on the second factor.

Let

$$V = V_1 - f_1^{-1}(D_1) \cup S, \quad V_2 - f_2^{-1}(D_2), \quad S = S^2 - D_1 \cup_h S^2 - D_2$$

and define $f: V \to S$ by

$$f[V_i - f_i^{-1}(D_i)] = f_i[V_i - f_i^{-1}(D_i)], \quad i = 1, 2.$$

It is clear that $S \approx S^2$ and $f: V \to S$ is a Lefschetz fibration of curves of genus g (provided V is algebraic. In all our applications we shall know a priori that V is algebraic.) We write V as $V = V_1 \oplus V_2$ and call it the direct Lefschetz sum of V_1 and V_2. We then have

Proposition 4. Let $f_i: V_i \to S^2$ be exceptional Lefschetz fibrations of curves of the same genus g for $i = 1, 2$.

Let $V = V_1 \oplus V_2$ and $f: V \to S^2$ be defined as above. Then V admits a handlebody decomposition with no 1- or 3-handles.

Proof. Since the f_i are exceptional Lefschetz fibrations of genus g there exist systems of paths in $\mathbb{C}P^1$ such that we can define Lefschetz vanishing and relative cycles s^j_i on $V_{i,0}$ and Δ'_j on $V_i, i = 1, j = 1, \ldots, N_1; i = 2, j = 1, \ldots, N_2$, such that there exist subsystems $s^j_i, i = 1, 2; j = 1, \ldots, 2g$, of the Lefschetz vanishing cycles satisfying Property W.

Let $V'_i = V_{i,0} \cup (\cup_{j=1}^{2g} \Delta'_j), i = 1, 2$. Then $V'_i = V_i - T(V_{i,\infty})$ admits the following decomposition.

$$V'_i \approx N(V'_{i,0}) \cup \bigcup_{j=1}^{N_i} N(\Delta'_j) = N(V'_i) \cup \bigcup_{j=g+1}^{N_i} N(\Delta'_j)$$

where \approx means “deformation retract”, $N(A)$ is a regular nbhd of $A \subset V'_i$ in V'_i and $T(X)$ is a tubular neighborhood of X.

Then by Property W we deduce that $N(V'_i)$ is homeomorphic to $D^4 \cup \{2\text{-handle}\}$. In particular let $p_i \in V'_{i,0} - \bigcup_{j=1}^{2g} \Delta'_j$. Then there exists a 2-disc $D_i \supset p_i$ in $V_{i,0}$ and we have that $H'_0 = N((V'_{i,0} - D_i) \cup (\cup_{j=1}^{2g} \Delta'_j))$ is a 0-handle while $N(D_i), N(\Delta'_j), i = 1; j = 2g + 1, \ldots, N_1, i = 2; j = 2g + 1, \ldots, N_2$, are 2-handles attached to H'_0 along $N(D_i) \cap \partial H'_0, N(\Delta'_j) \cap \partial H'_0$ respectively.

Thus V'_i admits a handlebody decomposition consisting only of a 0-handle and $N_1 - 2g + 1$ 2-handles.

In particular then by duality we obtain that since $V = V'_1 \cup V'_2$ then V admits a handlebody decomposition consisting only of a 0-handle, $N_1 + N_2 + 2 - 4g$ 2-handles and a 4-handle as desired.

We now have

Theorem 5. Suppose X is a nonsingular complete intersection of k distinct hypersurfaces V_1, \ldots, V_k in $\mathbb{C}P^k + 2$. Then X has a handlebody decomposition without 1- and 3-handles.
PROOF. Since \(X \) is a complete intersection we may, using Corollary 6.2 of \([\text{MM}2]\), assume that there exist \(k \) hypersurfaces \(V_i(n_i) \) of degree \(n_i \) in \(\mathbb{CP}^{k+2} \) such that setting \(Y = \bigcap_{i=1}^{k} V_i(n_i) \) we have that \(Y \) is nonsingular and \(Y \) intersects \(V_k(n_k) \) transversely. Furthermore, as our theorem is obvious for \(\mathbb{CP}^2 \) we may also assume without loss of generality that \(n_k > 2 \). Using Corollary 6.2 of \([\text{MM}2]\) we see that there exists a hypersurface \(V'_k \) of degree \(n_k - 1 \) in \(\mathbb{CP}^{k+2} \) and a hyperplane \(H \) in \(\mathbb{CP}^{k+2} \) such that \(V'_k, H \) intersect \(Y \) transversely and \(V'_k, H, V_k \) have normal crossing in \(\mathbb{CP}^{k+2} \).

Let \(X' = Y \cap V'_k, X'' = Y \cap H, C = Y \cap V'_k \cap H, m = X \cdot V'_k \cdot H, m_1 = X' \cdot H^2, m_2 = (X'')^2 \cdot H \) (where \(\cdot \) is multiplication of cycles in the homology ring of \(\mathbb{CP}^{k+2} \) and we identify \(H_0(\mathbb{CP}^{k+2}) \) with \(\mathbb{Z} \)).

Then again using Corollary 6.2 of \([\text{MM}2]\), we obtain \(X = \sigma_m(X') - T(C) \cup X'' - T(C) \) where \(\sigma_m(X') \) is \(X' \) blown up at \(m \) points and \(T(C), T(C) \) are tubular neighborhoods of \(C = (\text{strict image of } C \text{ in } \sigma_m(X')) \), and \(C \) respectively. But using \([P, \text{Chapter 2, Corollary 3}]\), we can obtain \(X = \sigma_m(X') - T(C') \cup \sigma_m(X'') - T(C'') \) where \(C', C'' \) denote strict images.

But using Proposition 3 we see that \(\sigma_m(X') \) and \(\sigma_m(X'') \) both admit exceptional Lefschetz fibrations with \(C' \), resp. \(C'' \) a typical fiber. Thus we obtain that \(X = \sigma_m(X') \oplus \sigma_m(X'') \) and so by Proposition 4 we have that \(X \) admits the requisite handlebody techniques.

Using similar techniques together with the methods of \([M]\) we can also obtain

Theorem 6. Suppose \(X \) is either a nonsingular simply-connected elliptic surface with no more than one multiple fiber or a cyclic branched cover of a nonsingular complete intersection surface with branch locus a nonsingular complete intersection curve. Then \(X \) admits a handlebody decomposition without 1- and 3-handles.

References

Department of Mathematics, University of Rochester, Rochester, New York 14627