Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Special handlebody decompositions of simply connected algebraic surfaces


Author: Richard Mandelbaum
Journal: Proc. Amer. Math. Soc. 80 (1980), 359-362
MSC: Primary 57R65; Secondary 14J99
DOI: https://doi.org/10.1090/S0002-9939-1980-0577774-X
MathSciNet review: 577774
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we prove that any nonsingular complete-intersection surface admits a handlebody decomposition with no 1- and 3-handles. This generalizes results of Rudolph, Harer and Akbuluf on hypersurfaces of $ {\mathbf{C}}{{\mathbf{P}}^3}$.


References [Enhancements On Off] (What's this?)

  • [AF] A. Andreotti and T. Frankel, The second Lefschetz theorem on hyperplane sections, Global Analysis, Princeton Univ. Press, Princeton, N. J., 1969, pp. 1-20. MR 0271106 (42:5989)
  • [HKK] J. Harer, A. Kas and R. Kirby (to appear).
  • [K] R. Kirby, Problems in low dimensional manifold theory, Proc. Sympos. Pure Math, vol. 32, part 2, Amer. Math. Soc., Providence, R. I, 1978. MR 520548 (80g:57002)
  • [M] R. Mandelbaum, On the topology of elliptic surfaces, Advances in Math. (Supplem. Studies, Vol. 5), (1979), 143-166. MR 527248 (80j:57034)
  • [M1] R. Mandelbaum and B. Moishezon, On the topological structure of non-singular algebraic surfaces in $ {\mathbf{C}}{P^3}$, Topology 15 (1976), 23-40. MR 0405458 (53:9251)
  • [MM2] -, On the topology of simply-connected algebraic surfaces, Trans. Amer. Math. Soc. 260 (1980), 195-222. MR 570786 (81g:14018)
  • [P] U. Person, Thesis, Harvard Univ., Cambridge, Mass., 1975.
  • [R] L. Rudolph, A Morse function for a surface in $ {\mathbf{C}}{{\mathbf{P}}^3}$, Topology 14 (1975), 301-303. MR 0405463 (53:9256)
  • [W] A. Wallace, Homology theory on algebraic varieties, Pergamon, New York, 1958. MR 0093522 (20:46)
  • [Wb] B. Wajnryb, Lefschetz vanishing cycles arising from a family of plane curves, Thesis, Hebrew University, Jerusalem, Israel, 1976.
  • [Z] O. Zariski, An introduction to the theory of algebraic surfaces, Lecture Notes in Math., vol. 83, Springer-Verlag, Berlin and New York, 1972. MR 0344246 (49:8985)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57R65, 14J99

Retrieve articles in all journals with MSC: 57R65, 14J99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0577774-X
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society