THE MEAN-VALUE ITERATION FOR SET-VALUED MAPPINGS

PETER K. F. KUHFITTIG

Abstract. In this note Krasnoselskii's iteration procedure

\[x_{n+1} = \frac{1}{2} (I + T)x_n \]

is extended to certain classes of set-valued mappings.

1. Introduction. Let \(C \) be a convex subset of a Banach space \(B \) and \(T \) a self-mapping of \(C \) and consider the following iteration process of a type introduced by Mann [7]: for an arbitrary starting point \(x_0 \in C \)

\[x_{n+1} = (1 - c_n)x_n + c_nTx_n, \quad n = 0, 1, 2, \ldots, \quad (*) \]

where \(c_n \in [a, b] \) for \(0 < a < b < 1 \). The special case \(c_n = \frac{1}{2} \) for all \(n \) was first introduced by Krasnoselskii [5], who showed that the sequence converges to a fixed point of \(T \) if \(T \) is nonexpansive, \(B \) uniformly convex, and \(C \) compact. This result remains valid if \(c_n = \alpha, 0 < \alpha < 1 \) (Schaefer [12]). Moreover, it is sufficient to assume that \(B \) is strictly convex (Edelstein [3]). Retaining uniform convexity, Browder and Petryshyn [1] assumed \(C \) to be closed and \(T \) demicompact. Under the latter conditions, the sequence \((*)\) converges to a fixed point of \(T \) if \(T \) is merely continuous and quasinonexpansive, that is, nonexpansive about its set of fixed points, assumed nonempty. (See Corollary which follows.) The iteration \((*)\) has been investigated by Senter and Dotson [13].

In this paper we shall consider an analogous iteration for a mapping \(T: C \to K(C) \), where \(K(C) \) is the family of nonempty compact subsets of \(C \). It is assumed that one fixed point \(z \) is known and that \(T \) is nonexpansive about this point, that is, for all \(x \in C \)

\[D(Tx, Tz) < \| x - z \|, \]

where \(D \) is the Hausdorff metric on \(K(C) \). The iteration procedure is designed to generate additional fixed points.

Regarding the existence of fixed points, it was shown by Lim [6] that if \(C \) is a convex closed and bounded subset of a uniformly convex Banach space, then a nonexpansive mapping \(T: C \to K(C) \) has a fixed point. This result has recently been extended by Downing and Kirk [2].

2. The sequence. Let \(z \in Tz \) be the known fixed point. Since \(Tx \) is compact and \(D \) the Hausdorff metric, we can find for every \(x \in C \) a point \(p_x \in Tx \) such that

\[\| z - p_x \| < D(Tz, Tx). \]
Using this information, suppose we construct a sequence \(\{x_n\} \) in \(C \) as follows: let \(x_0 \in C \) and \(p_0 \in Tx_0 \). Next let
\[
x_1 = (1 - c_0)x_0 + c_0 p_0,
\]
where \(c_0 \in [a, b] \), \(0 < a < b < 1 \). Then we can find \(p_1 \in Tx_1 \) such that
\[
\|z - p_1\| < D(Tz, Tx_1)
\]
by the prior comments. Now let
\[
x_2 = (1 - c_1)x_1 + c_1 p_1.
\]
Since \(Tx_2 \) is compact, we can find \(p_2 \in Tx_2 \) such that
\[
\|z - p_2\| < D(Tz, Tx_2).
\]
Continuing in this manner
\[
x_{n+1} = (1 - c_n)x_n + c_n p_n, \quad n = 0, 1, 2, \ldots,
\]
where \(c_n \in [a, b] \) for \(0 < a < b < 1 \), \(p_n \in Tx_n \), and
\[
\|z - p_n\| < D(Tz, Tx_n).
\]
Since \(T \) is not even assumed to be quasinonexpansive, we do require continuity in the following sense.

Definition 1. A mapping \(T: C \to K(C) \) is continuous if for any sequence \(\{y_n\} \) in \(C \), \(y_n \to y \) implies that \(Ty_n \to Ty \).

Definition 2 (Petryshyn [10]). A mapping \(U: C \to B \) of a subset \(C \) of a Banach space \(B \) into \(B \) is said to be demicompact if whenever \(\{x_n\} \subset C \) is a bounded sequence and \(\{x_n - Ux_n\} \) is a convergent sequence, then there exists a subsequence \(\{x_{n_k}\} \) which is convergent.

For set-valued mappings we have the following analogous definition.

Definition 3. A mapping \(T: C \to K(C) \) will be called demicompact if whenever \(\{x_n\} \subset C \) is a bounded sequence and \(\{\text{dist}(x_n, Tx_n)\} \) is a convergent sequence, then there is a subsequence \(\{x_{n_k}\} \) which is convergent.

In the proof of the first theorem we are going to need the following two lemmas.

Lemma 1 (Schaefer [12]). Let \(B \) be a uniformly convex Banach space. Then for \(\varepsilon > 0 \), \(d > 0 \), and \(\alpha \in (0, 1) \) the inequalities \(\|x\| < d \), \(\|y\| < d \), and \(\|x - y\| > \varepsilon \) imply that
\[
\|(1 - \alpha)x + \alpha y\| < \left[1 - 2 \delta(\varepsilon/d) \min(1 - \alpha, \alpha) \right] d;
\]
\(\delta \) is strictly increasing.

Lemma 2 (Nadler [9]). Let \(\{A_n\} \) be a sequence of sets in \(K(C) \) and suppose
\[
\lim_{n \to \infty} D(A_n, A_0) = 0, \quad \text{where } A_0 \in K(C).
\]
Then if \(x_n \in A_n \), \(n = 1, 2, \ldots \), and if \(\lim_{n \to \infty} x_n = x_0 \) it follows that \(x_0 \in A_0 \).

3. Results.

Theorem 1. Let \(C \) be a nonempty convex closed subset of a uniformly convex Banach space \(B \). If \(T: C \to K(C) \) is a continuous demicompact mapping which is nonexpansive about a known fixed point \(z \), then for the sequence \(\{x_n\} \) defined previously, (a) there exists a subsequence \(\{x_{n_k}\} \) converging to a fixed point of \(T \) and
(b) every cluster point of \(\{x_n\} \) is a fixed point of \(T \). (In particular, every convergent subsequence of \(\{x_n\} \) converges to a fixed point.)

Proof. The first step is to show that for the sequence \(\{x_n\} \) constructed previously

\[
\|x_n - p_n\| \to 0 \quad \text{as} \quad n \to \infty.
\]

If not, then there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) and a number \(\epsilon > 0 \) such that

\[
\|x_{n_k} - p_{n_k}\| \geq \epsilon. \quad (1)
\]

Since \(p_n \in Tx_n \),

\[
\|z - p_n\| \leq D(Tz, Tx_n) < \|z - x_n\|. \quad (2)
\]

Then by (1), (2) and Lemma 1 there exists

\[
\delta = \delta(\epsilon/\|z - x_{n_k}\|) > 0
\]

such that

\[
\|z - x_{n_{k+1}}\| = \|z - (1 - c_{n_k})x_{n_k} - c_{n_k}p_{n_k}\|
\]

\[
= \|(1 - c_{n_k})(z - x_{n_k}) + c_{n_k}(z - p_{n_k})\|
\]

\[
< (1 - \delta\gamma)\|z - x_{n_k}\|,
\]

where \(\gamma = 2 \min(1 - c_{n_k}, c_{n_k}) \). From

\[
\|z - x_{n_{k+1}}\| = \|(1 - c_{n_k})(z - x_{n_k}) + c_{n_k}(z - p_{n_k})\| < \|z - x_{n_k}\|, \quad (3)
\]

the sequence \(\{\|z - x_n\|\} \) is nonincreasing, and since \(\delta \) is strictly increasing, the sequence

\[
\{\delta(\epsilon/\|z - x_{n_k}\|)\}
\]

in nondecreasing. Since we also have

\[
\|z - x_{n_k}\| < \|z - x_{n_{k+1}}\| < (1 - \delta\gamma)\|z - x_{n_{k+1}}\|
\]

for

\[
\delta = \delta(\epsilon/\|z - x_{n_{k+1}}\|)
\]

and

\[
\gamma = 2 \min(1 - c_{n_k}, c_{n_k}),
\]

it follows that

\[
\|z - x_{n_k}\| \to 0 \quad \text{as} \quad j \to \infty.
\]

By (2) \(\|z - p_n\| \to 0 \), whence \(\|x_{n_k} - p_{n_k}\| \to 0 \) as \(j \to \infty \), contradicting statement (1). Hence

\[
\|x_n - p_n\| \to 0 \quad \text{as} \quad n \to \infty, \quad (4)
\]

which was to be shown.

It now follows from (4) that \(\text{dist}(x_n, Tx_n) \to 0 \) as \(n \to \infty \). Moreover, by (3), \(\{x_n\} \) is a bounded sequence. So by demicompactness there exists a subsequence \(\{x_{n_k}\} \) of
\{x_n\} such that \(x_n \to z_0 \in C\). Also, from
\[
\|p_n - z_0\| \leq \|p_n - x_n\| + \|x_n - z_0\|,
\]
we have that \(p_n \to z_0\). But \(Tx_n \to Tz_0\) by continuity. Consequently, since \(p_n \in Tx_n\), \(z_0 \in Tz_0\) by Lemma 2.

Finally, if \(w_0\) is a cluster point of \(\{x_n\}\), there exists a subsequence converging to \(w_0\), which is a fixed point by the above argument. This completes the proof.

Recall from §2 that \(p_x \in Tx\) is a point for which \(\|z - p_x\| < D(Tz, Tx)\). Suppose for every such \(p_x \in Tx\) and \(p_y \in Ty\), \(T : C \to K(C)\) satisfies the condition
\[
D(Tx, Ty) < \alpha \|x - p_x\| + \beta \|y - p_y\|
\]
for all \(x, y \in C\) and \(\alpha, \beta \in [0, \infty)\).

Then if \(\alpha = \beta \in [0, \frac{1}{2}]\) and if \(T\) is a point-to-point mapping, \(T\) is a Kannan mapping, first introduced by Kannan [4]. Such mappings have been studied extensively.

If \(p_w\) is chosen (without reference to the fixed point \(z\)) so that \(\|w - p_w\| = \text{dist}(w, Tw)\) and if \(\alpha = \beta = \frac{1}{2}\), then \(T\) becomes a set-valued Kannan mapping. Such mappings were studied by Shiau, et al. [14], [15]. Clearly, any Kannan mapping is of Type A.

Theorem 2. If \(T\) in Theorem 1 is of Type A, then \(Tx_n \to Tz_0\), where \(z_0 \in Tz_0\).

Proof. For every \(e > 0\) there exists \(N > 0\) such that
\[
D(Tx_n, Tx_m) < \alpha \|x_n - p_n\| + \beta \|x_m - p_m\| < e
\]
for all \(m, n > N\), so that \(\{Tx_n\}\) is a Cauchy sequence. Since \(C\) is complete, \((K(C), D)\) is complete (Michael [8]). Hence \(Tx_n \to L \in K(C)\). Since \(x_n \to z_0\), \(Tx_n \to Tz_0\), so that \(L = Tz_0\).

The result of Theorem 2 is, in one sense, the best possible. For if \(T\) is a nonexpansive set-valued mapping, then the natural analogue of Krasnoselskii’s procedure is the following: let \(x_0 \in C, q_0 \in Tx_0,\) and \(x_1 = \frac{1}{2}x_0 + \frac{1}{2}q_0\). Now choose \(q_1 \in Tx_1\) such that
\[
\|q_1 - q_0\| < D(Tx_1, Tx_0).
\]
In general, \(x_{n+1} = \frac{1}{2}x_n + \frac{1}{2}q_n\), where \(q_n \in Tx_n\) and
\[
\|q_n - q_{n-1}\| < D(Tx_n, Tx_{n-1}),
\]
whence
\[
\|q_n - q_{n-1}\| < \|x_n - x_{n-1}\|.
\]
This construction fails, however, as can be seen from the mapping \(T : R \to K(R)\) defined by \(Tx = [x - 1, x + 1]\). If for \(Tx_n = [x_n - 1, x_n + 1]\), we choose \(q_n = x_n + 1\), then the resulting sequence has no convergent subsequence.

If \(T\) is a point-to-point mapping, then \(q_n = Tx_n\), and \(\{x_n\}\) reduces to Krasnoselskii’s iteration. Now suppose \(T\) is continuous, demicompact, and quasinonexpansive with a nonempty set \(F\) of fixed points. Returning to the sequence (\(\ast\)), if \(z \in F\), then
\[
\|z - Tx_n\| < \|z - x_n\|.
\]
and, by the proof of Theorem 1, there exists a subsequence \(\{x_n\} \) for which \(x_n \to z_0 = Tz_0 \). Since \(\{\|z_0 - x_n\|\} \) is clearly nonincreasing, \(x_n \to z_0 \). This proves the following

Corollary. Let \(C \) be a nonempty convex closed subset of a uniformly convex Banach space. If \(T: C \to C \) is a continuous demicompact quasinonexpansive mapping with a nonempty set of fixed points, then the sequence (*) converges to a fixed point of \(T \).

This result is similar to Theorem 1.1' in [11] and Theorem 2 in [13].

References