AN IMPROVED ESTIMATE FOR THE BLOCH NORM OF FUNCTIONS IN DOOB’S CLASS

J. S. HWANG AND D. C. RUNG

Abstract. For any fixed $0 < \rho < 2\pi$, $\mathcal{D}(\rho)$ is the family of all holomorphic functions in Δ which satisfy (i) $f(0) = 0$, and (ii) $\lim_{|z| \to \rho} |f(z)| > 1$, for all τ lying on some arc $\Gamma_\tau \subseteq \partial \Delta$ with arclength $|\Gamma_\tau| > \rho$. We showed that for each $f \in \mathcal{D}(\rho)$ there exists a point $z_f \in \Delta$ at which

$$|f'(z_f)(1 - |z_f|^2)| > \frac{2}{e} \frac{\sin(\pi - (\rho/2))}{(\pi - (\rho/2))}.$$

In this paper we improve this estimate by replacing the quantity $\pi - (\rho/2)$ with a value $\theta(\rho)$ which lies between 0 and $\pi - (\rho/2)$ and so improves the estimate. The value $\theta(\rho)$ is defined as the (unique) solution in this interval of the equation

$$F_\rho(\theta) = \log(\cot(\rho/4)\cot(\theta/2)) - \frac{\theta}{\sin \theta} = 0.$$

1. In a series of papers ([4]–[8]) J. L. Doob introduced a family $\mathcal{D}(\rho)$ of holomorphic functions in the unit disc Δ, whose boundary we denote by $\partial \Delta$. For any fixed $0 < \rho < 2\pi$, $\mathcal{D}(\rho)$ is the family of all holomorphic functions in Δ which satisfy (i) $f(0) = 0$, and (ii) $\lim_{|z| \to \rho} |f(z)| > 1$, for all τ lying on some arc $\Gamma_\tau \subseteq \partial \Delta$ with arclength $|\Gamma_\tau| > \rho$. Doob posed the question as to whether the set of Bloch norms $\{\|f\|_B = \sup_{z \in \Delta} |f'(z)(1 - |z|^2)|\}_{f \in \mathcal{D}(\rho)}$ has a positive lower bound. We showed in [10] that for each $f \in \mathcal{D}(\rho)$ there exists a point $z_f \in \Delta$ at which

$$|f'(z_f)(1 - |z_f|^2)| > \frac{2}{e} \frac{\sin(\pi - (\rho/2))}{(\pi - (\rho/2))}.$$

In this paper we improve this estimate by replacing the quantity $\pi - (\rho/2)$ with a value $\theta(\rho)$ which lies between 0 and $\pi - (\rho/2)$. The value $\theta(\rho)$ is defined as the (unique) solution in this interval of the equation

$$F_\rho(\theta) = \log(\cot(\rho/4)\cot(\theta/2)) - \frac{\theta}{\sin \theta} = 0.$$

Functions in $\mathcal{D}(\rho)$ produce upper estimates to the various Bloch constants [2]. For f holomorphic in Δ set $b(f) = \sup\{r|\text{there exists a domain }\Delta_1 \subseteq \Delta \text{ such that } f \text{ is univalent on } \Delta_1 \text{ and } f(\Delta_1) \text{ contains a disc of radius } r\}$. If \mathcal{B} denotes the family of holomorphic functions in Δ normalized by $|f'(0)| > 1$, then the Bloch constant B is defined as

$$B = \inf_b b(f), \quad f \in \mathcal{B}.$$
If \mathbb{B}_s denotes the subfamily of \mathbb{B} of all univalent functions then $B_s = \inf b(f)$, $f \in \mathbb{B}_s$. It is known that $\sqrt[3]{\frac{3}{4}} < B < 0.472$; $0.544 < B_s < 0.658$. These lower estimates are due to Heins [9] and Landau [11], respectively, while the upper estimates are due to Ahlfors and Grunsky [1] and R. Robinson [13], respectively. With no loss of generality the normalization $|f'(0)| > 1$ can be relaxed. If L is a Möbius transformation of Δ onto Δ taking 0 into z then we have both $b(f \circ L) = b(f)$ and $(f \circ L)'(0) = (1 - |z|^2)|f'(z)|$. So we replace \mathbb{B} (and \mathbb{B}_s) by replacing $|f'(0)| > 1$ by $|f'(z_f)|(1 - |z|^2) > 1$, for some $z_f \in \Delta$. The constants B and B_s remain unchanged. From our previous results as stated in (1.0) we see that $f \in \mathbb{B}(\rho)$ implies

$$
\left(\frac{e^{\frac{\pi - (\rho/2)}}{2 \sin(\pi - (\rho/2))}\right)f \in \mathbb{B},
$$

and so upper estimates for B (and B_s) can be obtained from functions in $\mathbb{B}(\rho)$. Any improvement in the constant $(e/2)(\pi - (\rho/2))/\sin(\pi - (\rho/2))$ should be of some interest.

2. Main result. If $A \subseteq \Delta$, let ∂A denote the topological boundary of A. If $\partial A \cap \partial A$ contains an arc Y then, as usual, let $\omega(z, \Gamma, A)$ denote the harmonic measure at z of Y relative to A. If $A = \Delta$ then we define the lens-shaped domain in Δ by

$$
S(\alpha, \Gamma) = \{z \in \Delta|\omega(z, \Gamma, \Delta) > (\pi - \alpha)/\pi\}, \quad 0 < \alpha < \pi.
$$

It is easy to show that $\partial S(\alpha, \Gamma) \cap \Delta$ makes the angle α with ∂A. If $\alpha = \pi - (\rho/2)$ then $\partial S(\alpha, \Gamma)$ contains the origin. The proof of the main result is based upon a sharpened form of the Lehto-Virtanen differential two constant theorem [12] due to S. Dragosh and D. C. Rung [3]. For completeness we state a less general version suitable for our needs. It is similar to the version used in [10].

Theorem D-R. Let f be meromorphic in Δ. Fix a domain of the form $S(\alpha, \Gamma)$ and suppose

(i) $\sup_{z \in S(\alpha, \Gamma)} |f(z)| = M < \infty$;

(ii) there exists a point $q \in \partial S(\alpha, \Gamma) \cap \Delta$ at which $|f(q)| = M$;

(iii) for each $\tau \in \Gamma$, $\lim z \to \tau |f(z)| < m < M$.

Then

$$
|f'(q)|(1 - |q|^2) > \left(\frac{2 \sin \alpha}{\alpha}\right)M \log \frac{M}{m}. \quad (2.0)
$$

In preparation for the main result we need a few more details. For any fixed $0 < \rho < 2\pi$, denote the (unique) root of $\log[\cot(\rho/4)\cot(\theta/2)] - \theta/\sin \theta = 0$ lying in $(0, \pi - (\rho/2))$ by $\theta(\rho)$. On this interval the first term of the equation decreases from $+\infty$ to 0 while the left side increases from 1 to $(\pi - \rho/2)/\sin(\pi - (\rho/2))$. Given an arc $\Gamma \subseteq \partial \Delta$, with midpoint τ, let r_τ denote the radius to τ and set $S(\alpha, \Gamma) = S(\alpha, \Gamma) \cup r_\tau$, $0 < \alpha < \pi.$
Theorem 1. Suppose \(f \in \mathfrak{D}(\rho) \) for some fixed \(\rho, 0 < \rho < 2\pi \), and some arc \(\Gamma_f \subset \partial \Delta \). Then there exists at least one point \(z_f \in \partial S(\theta(\rho), \Gamma_f) \) at which

\[
|f'(z_f)| (1 - |z_f|^2) > \frac{2}{e} \frac{\sin \theta(\rho)}{\theta(\rho)}. \tag{2.1}
\]

Proof. We may suppose \(\Gamma_f \) is symmetric about \(z = 1 \) so that \(r \) is the segment \(0 < x < 1 \). To the contrary suppose for all \(z \in \partial S(\theta(\rho), \Gamma_f) \)

\[
|f'(z)| (1 - |z|^2) < \frac{2}{e} \frac{\sin \theta(\rho)}{\theta(\rho)}. \tag{2.2}
\]

Let \(x^* \) be the intersection of \(\partial S(\theta(\rho), \Gamma_f) \) and \([0, 1)\). We are going to show first that (2.2) and Theorem D-R imply \(|f(x^*)| > 1/e \); and secondly a straightforward estimate from (2.2) implies \(|f(x^*)| < 1/e \). To show the first inequality we put \(g = 1/f \) and let \(\Gamma_	heta \) denote the subarc of \(\Gamma_f \) with endpoints \(e^{-i\theta} \) and \(e^{i\theta} \), \(0 < \theta < \rho/2 \). Put \(M(\theta) = \sup |g(z)|, z \in S(\theta(\rho), \Gamma_\theta) \). Choose any value \(\theta \) for which \(M(\theta) \) is finite. Apply Theorem D-R to \(g \) on the domain \(S(\theta(\rho), \Gamma_\theta) \). In this situation \(m = 1 \) and \(M = M(\theta) \) and so we conclude that for some \(q_\theta \in \partial S(\theta(\rho), \Gamma_\theta) \cap \Delta \)

\[
|g'(q_\theta)| (1 - |q_\theta|^2) > \frac{2 \sin \theta(\rho)}{\theta(\rho)} M(\theta) \log M(\theta). \tag{2.3}
\]

If we remember \(g = 1/f \) then (2.3) together with assumption (2.2) gives

\[
\frac{2 \sin \theta(\rho)}{\theta(\rho)} \frac{\log M(\theta)}{M(\theta)} \leq |f'(q_\theta)| (1 - |q_\theta|^2) < \frac{2}{e} \frac{\sin \theta(\rho)}{\theta(\rho)},
\]

or

\[
\frac{\log M(\theta)}{M(\theta)} \leq \frac{1}{e}. \tag{2.4}
\]

In the interval \([1, \infty)\) the function \(\log x/x \) has a single maximum value of \(1/e \) at \(x = e \). The finite (and infinite) values of \(M(\theta) \) form a connected set, which because of (2.4) lies either in \([1, e)\) or \((e, \infty)\). But \(f \in \mathfrak{D}(\rho) \) implies that \(M(\theta) \) is close to \(1 \) for small values of \(\theta \) and so we conclude that \(M(\theta) < e \) for all values of \(0 < \theta < \rho/2 \). In particular \(1/|g(x^*)| = |f(x^*)| > 1/e. \) In the other direction we estimate \(f(x^*) \) by integrating \(f'(x) \) along the interval \([0, x^*)\). Under assumption (2.2) and remembering that \(f(0) = 0 \) we have

\[
|f(x^*)| \leq \int_0^{x^*} |f'(x)| \, dx < \frac{2}{e} \frac{\sin \theta(\rho)}{\theta(\rho)} \int_0^{x^*} \frac{dx}{1 - x^2} = \frac{1}{e} \frac{\sin \theta(\rho)}{\theta(\rho)} \log \left(\frac{1 + x^*}{1 - x^*} \right). \tag{2.5}
\]

To solve for \(x^* \) in terms of \(\theta(\rho) \) and \(\rho \) recall that \(\partial S(\theta(\rho), \Gamma_f) \cap \Delta \) is part of a circle making an angle \(\theta(\rho) \) with \(\partial \Delta \) at \(e^{-i\rho/2} \) and \(e^{i\rho/2} \). Using the law of sines we calculate \(x^* \) as the difference between the distance of the center of the circle determined by \(\partial S(\theta(\rho), \Gamma_f) \) from the origin, and the radius of this circle. We obtain
that

\[x^* = \frac{\sin(\theta(\rho)) - \sin(\rho/2)}{\sin(\theta(\rho) - (\rho/2))}. \]

A routine use of trigonometric identities shows that

\[\frac{1 + x^*}{1 - x^*} = \cot\left(\frac{\theta(\rho)}{2}\right)\cot(\rho/4). \quad (2.6) \]

Because \(\theta(\rho) \) was chosen so that

\[\sin \theta(\rho) = \cot(\rho/4) \]

(2.5) and (2.6) show that \(f(x^*) < 1/e \). Thus a contradiction is reached and (2.1) is established. Because \(0 < \theta(\rho) < \pi - (\rho/2) \) the monotonicity of \(\sin x/x \) shows that (2.1) is a better estimate than (1.0). In fact it is a much stronger result especially for small values of \(\rho \). For example when \(\rho = \pi \) the constant in (1.0) is \(4/e\pi \approx .468 \), while in (2.1) it is \(\approx .684 \); if \(\rho = \pi/10 \) then (1.0) gives a constant of \(\approx .08 \) while (2.1) gives \(\approx .345 \). As \(\rho \to 2\pi \), \(\theta(\rho) \to 0 \) and \((2/e)\sin \theta(\rho)/\theta(\rho) \to 2/e \). In this asymptotic case the constant \(2/e \) is best possible as was pointed out in [10]. Whether \((2/e)\sin \theta(\rho)/\theta(\rho) \) is best possible in general we do not know. In Table 1 we give various values of \(\rho \), \(\theta(\rho) \) and \(\kappa(\rho) = (2/e)\sin \theta(\rho)/\theta(\rho) \). It is easy to generate extensive values of \(\kappa(\rho) \) with any computer. Numbers in the table have been rounded to three places.

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(\theta(\rho))</th>
<th>(\kappa(\rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi)</td>
<td>.657</td>
<td>.684</td>
</tr>
<tr>
<td>(4\pi/5)</td>
<td>.839</td>
<td>.653</td>
</tr>
<tr>
<td>(3\pi/5)</td>
<td>1.06</td>
<td>.606</td>
</tr>
<tr>
<td>(2\pi/5)</td>
<td>1.33</td>
<td>.538</td>
</tr>
<tr>
<td>(\pi/5)</td>
<td>1.70</td>
<td>.429</td>
</tr>
<tr>
<td>(\pi/50)</td>
<td>2.35</td>
<td>.224</td>
</tr>
</tbody>
</table>

The convergence of \(\kappa(\rho) \) to 0 with \(\rho \) is rather slow. We have not been able to use functions belonging to the family \(\mathcal{D}(\rho) \) to obtain any improvement in the upper estimates for \(B \) and \(B_S \).

In Theorem 1 the normalization \(f(0) = 0 \) can be replaced by \(f(a) = 0 \) to produce a slightly more general theorem.

Theorem 2. Let \(f \) be holomorphic in \(\Delta \) and suppose \(f(a) = 0 \), \(a \in \Delta \). Suppose further for some arc \(\Gamma_f \subseteq \partial \Delta \) we have, for all \(t \in \Gamma_f \), \(\lim_{\zeta \to t} |f(\zeta)| > 1 \). Then there exists a point \(z_f \in S(\pi(1 - \omega(a, \Gamma_f, \Delta)), \Gamma_f) \) at which

\[|f'(z_f)|(1 - |z_f|^2) > \kappa(2\pi\omega(a, \Gamma_f, \Delta)). \]

Proof. It is easy to see that \(g(\zeta) = f((\zeta + a)/(1 + \bar{a}\zeta)) \) is in \(\mathcal{D}(2\pi\omega(a, \Gamma_f, \Delta)) \) and of course \(|g'(\zeta)|(1 - |\zeta|^2) = |f'(z)|(1 - |z|^2), \ z = (\zeta + a)/(1 + \bar{a}\zeta) \). An application of Theorem 1 to \(g(\zeta) \) proves Theorem 2. (Actually \(z_f \) lies in a smaller
domain but for simplicity we use the more familiar albeit larger domain
\(S(\pi(1 - \omega(a, \Gamma_f, \Delta)), \Gamma_f). \)

We close with several questions on the classes \(\mathcal{P}(\rho) \). Can one say anything about
the boundary behavior of \(f \) away from the arc \(\Gamma_f \) on which \(|f| > 1 \)? By applying
Fatou's Theorem to \(1/f \) in a neighborhood of \(\Gamma_f \) we see that \(f \) has angular limits
almost everywhere on \(\Gamma_f \). Can the condition \(\lim_{z \to e^i \Gamma_f} |f(z)| > 1 \) be relaxed to allow
this lower limit only for certain approaches to \(\Gamma_f \)? And lastly, is it possible to allow
\(\Gamma \) to be the union of finitely many arcs—perhaps symmetrically arranged on
\(\partial \Delta \)—and to produce a lower estimate for \(\|f\|_{B} \) which is better than the one obtained
by considering the largest subarc of \(\Gamma \)?

REFERENCES

2. A. Bloch, Les théorèmes de M. Valiron sur les fonctions entières, et la théorie de l'uniformisation,
3. S. Dragosh and D. C. Rung, Normal functions bounded on arcs and a proof of the Gross
5. ______, The boundary behavior of analytic functions. II, Trans. Amer. Math. Soc. 35 (1933),
718–751.
231–234.
11. E. Landau, Über die Blochsche Konstante und zwei verwandte Weltkonstanten, Math. Z. 30 (1929),
608–634.
12. O. Lehto and K. I. Virtanen, Boundary behavior and normal meromorphic functions, Acta Math. 97
(1957), 47–65.

Academia Sinica, Taipei, Taiwan, Republic of China

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania
16802