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BANACH SPACES WTTH THE 43. INTERSECTION PROPERTY

ÄSVALD LIMA

Abstract. We show that a finite-dimensional Banach space has the 4.3. intersec-

tion property if and only if it is isometric to an /„„-sum of one- and two-dimen-

sional spaces.

1. Introduction. Let n and k be integers with n > k > 2. We say that a Banach

space A has the n.k. intersection property (n.k.I.P.) if for every family {B(a¡, ri))"_x

of n closed balls in A such that DÍLi B(a^, r¡) i= 0 whenever 1 < /, < i2

< • • •  < ik < n, we have D ". i 5(a,> O *= 0-

In this note we want to compute the structure of finite-dimensional real Banach

spaces with the 4.3.I.P. We showed in [2] that complex spaces with the 4.3.I.P. are

exactly the predual L,-spaces. This is not true in the real case. By Helly's theorem

[5] all one- and two-dimensional real spaces have the 4.3.I.P. Hence also /„-sums of

one- and two-dimensional spaces have the 4.3.I.P. In Theorem 3 we show a partial

converse: If a finite-dimensional real space has the 4.3.I.P., then it is an /„-sum of

one- and two-dimensional spaces.

In the real case, a Banach space has the 4.2.I.P. if and only if it is a predual

L,-space [4]. But if A Q C(X), X compact Hausdorff, and I E A, then A has the

4.3.I.P. if and only if it is a predual L,-space [4].

In the following, let A be a real Banach space. Closed balls in A are denoted

B(a, r), and we write Ax = B(0, 1). The convex hull of a set S is denoted conv(S),

and the set of extreme points of a convex set C is denoted 9eC Let / be a subspace

of A and let n > 2. H "(A, J) denotes the space

H"(A, J) = j (x„ . .. , x„): all x, E A and ¿  x¡ G J )

equipped with the norm

We also write H"(A) = H"(A, (0)).

We shall use the following result [1].

= 2 IWI-
i-i

Theorem 1. If A has the 4.3.1.P. and (xx, . . . , x4) G deH4(A*)x, then at least one

x, equals 0.
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If in the definition of the 4.3.I.P. we replace D ?_ i B(a¡, r) =£ 0 by

4

H B(at, rt + e)*0
i = i

for all e > 0, then A has the 4.3.I.P. if and only if every extreme point in H4(A*)X

has at least one component which is 0.

Since for each /", S¡ = {(xx, . . ., x4) £ H\A*)X: x¡ = 0} is a w*-compact convex

set, we get the following corollary.

Corollary 2. If A has the 4.3.1.P., then H\A*)X = conv(U?_i S).

2. The main result. Our main result is the following theorem.

Theorem 3. Assume A is a real finite-dimensional space. Then A has the 4.3.1.P. if

and only if A is isometric to an lx-sum of one- and two-dimensional spaces.

A subspace J of A is called an L-summand if there exists another subspace N

such that A = J ® N and\\x + y\\ = ||x|| + || v|| for all x £ J and all v e N.

Clearly Theorem 3 follows from Proposition 4.

Proposition 4. Assume A has the 4.3.1.P. and let e £ deA*. Then there exists an

L-summand J of A* such that e £ J and dim J is 1 or 2.

If y is a subspace of A, let J' denote the (usually nonconvex) cone

/' = {x £ A: x = OotJ n faceOlxir'x) = 0}.

For x £ Ax, face(x) denotes the smallest face of Ax containing x. A closed

subspace J of A is called a semi L-summand if for all x £ J and all y £ J' we have

|| at + v|| = ||x|| + || v||.  In [1] we proved that each L-summand / is a semi

L-summand. N in the definition of L-summand is equal to /'.

In the proof of Proposition 4 we will need the following result.

Proposition 5. Assume A has the 4.3.1.P. If J is a semi L-summand of A*, then J

is an L-summand.

Proof. Let a £ J and let x, y £ J'. By [1, Theorem 5.3] and [1, Lemma 5.4], it

suffices to show that ||a + x + y\\ = \\a\\ + ||x +j>||. By Corollary 2, there exist

(z/,i> z¡a> z»,3> zia) g Ha(A*) with z(I = 0 for i — 1.4 such that

(a, x,y,-a - x - y) = (0, z12, z1>3, zM) + (z21, 0, zy> z24)

+ 03,1« •Z3^ 0» Z3,4) + (Z4,l> z4¿> ¿4,3> 0)

and ||a|| = ||z2;1|| + \\zXi\\ + ||z4jl||, ||x|| = ||z1>2|| + ||z3>2|| + ||z4,2|| and so on.

Since both J and J' are hereditary cones [1], we get z,., £ J and zi2, zi3 £ J' for all

i. But then since J is a semi L-summand,

Moll  =  K. + ¿4,2ll  »  Kill +  11*4,211

=  Klll  + p4,l + z4,3ll=2||z4jl||  +  ||z4J.
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Hence z4, = 0 = z42 + z43. Now using that J is a semi L-summand several times

gives

4

\\a + x+y\\= 2||z,4||
i-i

=  11*1,2 + «Uli  +  11*2,1 + <uH  +  11*3,1  + *3,2II

=  11*1,2 + *l,3ll  +  ll*2,lll  +  ll*2,îll  + ll*3,lll  +  ll*3,2ll

>   11*1,2 + *1,3 + *2,3 + *3,2ll  +  11*2,1 + *3,lll

-||x + v|| + ||a||> ||a + x + y||.

The proof is complete.

Proof of Proposition 4. Let e G 9e/l*. If span(e) is a semi L-summand, then by

Proposition 5 there is nothing more to prove. Hence assume that span(e) is not a

semi L-summand. Then by [1, Corollary 5.13], there exists an (x, y) G

deH2(A*, span(e)), such that x, y £ span(e) and x + y =£ 0. Let z = -(x + y) G

span(e). Let a~x = ||x|| + ||v|| + ||z||. Then a(x,y,z) E H\A*)X. By [3, Lemma

1], we get a(x,y, z) E deH3(A*)x. Let e, = e, e2 = ||x||_1x, e3 = || y||"V and let

E = span(e,, e2, e3). Then dim E = 2. By [2, Lemma 3.3], we also get e2, e3 E deA\*.

We claim that E is an L-summand. By Proposition 5, it suffices to show that E is

a semi L-summand. Suppose (u, v) G deH2(A*, E)x. By [1, Corollary 5.13], E is a

semi L-summand if we can show that u + v = 0 or u, v E E.

So suppose u + v ^ 0. Since u + v E E, we can write u + v = aex + be2. By

using the basis ex, e3 or e2, e3 for E if necessary, we can assume a ^ 0 and b ¥= 0.

By Corollary 2, there exist (z(1, zl2, zi3, zl4) G H*(A*) with z,, = 0 for / =

1, . . ., 4 such that

(w, v, -aex, -be2) = (0, zX2, zX3, z,4) + (z2x, 0, zy, z24)

+ (*3,1. *3,2> 0, Z34) + (Z4i„ Z42, Z43, 0)

and ||ti|| = Hzj.,11 + ||z3;1|| + ||z4>1||, ||o|| = ||z1)2|| + ||z3>2|| + ||z4>2|| and so on. Since

e„ e2 E deA f, we get z, 3, z, 4 G E for all i. Hence

(u, v) = (0, z12) + (z2„ 0) + (z31, z3i2) + (z41, z42)

gives us a convex combination in H2(A*, E)x. In fact,

4

l - IMI + NI = 2 (Ikill + Hzall)
/-i

=  11(0, *,,2)ll +  ll(*2,l, 0)|| +  ||(Z3)1, Z3j2)|| +  ||(Z4)„ Z4>2)||.

If (z3,, z32) i= 0, then since (u, v) is an extreme point, we have (u, v) = t(z3x, z3;2)

for some / > 0. Hence aex + be2 = u + v = t(z3, + z3^) = -tz34 = ce2 for some

c. Since e, and e2 are linearly independent, we get a contradiction. Hence (z3 ,, z32)

= 0. Similarly we show that (z4,, z42) = 0. But then u = z2, = -(zi3 + zi4) G E

and ü = z, 2 G F. The proof is complete.

Let A = (/¿ © /?),, dim/I = 4. Hence /I has the 6.5.I.P. An inspection of the

extreme points of H5(A*)X, using a generalized version of [2, Lemma 3.3], shows

that every extreme point of H5(A*)X has at least one component which is 0. In fact,
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if (x„ ...,x5)£ deH\A*\ with all xt ¥= 0, then HxJ-1^ G 3ylf for all i. (See [2,
Lemma 3.3].) The extreme points of /If are (± 1, 0, 0 ± 1), (0, ± 1, 0 ± 1) and

(0, 0 ± 1, ± 1). Since 2f_i x, = 0, we may assume that all x, have a zero first

coordinate. But then it follows that at least one x, = 0, since we can consider all x,

as vectors in (I2 © R),   = /¿. A typical extreme point of H5(A*)5 is

((0, 0, 0, 0), (1, 0, 0, 1), (-1, 0, 0, 1), (0, 1, 0, -1), (0, -1, 0, -1)).

We get from [1, Theorem 2.10], that A has the 5.4.I.P. This example shows that if a

finite-dimensional space A has the (n + l).n.I.P. with n > 4, then it is not always

possible to write A as an /^,-sum of spaces whose dimension is < n — 1.
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