Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A lower bound for the spectral radius


Author: Vlastimil Pták
Journal: Proc. Amer. Math. Soc. 80 (1980), 435-440
MSC: Primary 15A60; Secondary 30D50
MathSciNet review: 580999
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an inequality for a problem of Carathéodory type: given n inner functions $ {m_1},{m_2}, \ldots ,{m_n}$, to find the smallest norm of an $ {H^\infty }$ function such that the first n terms of its power series coincide with those of the product $ {m_1} \cdots {m_n}$. As an application, we obtain a lower bound for the spectral radius of an n-dimensional operator on Hilbert space in terms of its norm and the norm of its nth power.


References [Enhancements On Off] (What's this?)

  • [1] Zdeněk Dostál, Uniqueness of the operator attaining 𝐶(𝐻_{𝑛},𝑟,𝑛), Časopis Pěst. Mat. 103 (1978), no. 3, 236–243 (English, with Russian summary). MR 506552
  • [2] Zdeněk Dostál, Polynomials of the eigenvalues and powers of matrices, Comment. Math. Univ. Carolin. 19 (1978), no. 3, 459–469. MR 508954
  • [3] Zdeněk Dostál, The critical exponent of operators with constrained spectral radius, Comment. Math. Univ. Carolin. 19 (1978), no. 2, 315–318. MR 500124
  • [4] Jan Mařík and Vlastimil Pták, Norms, spectra and combinatorial properties of matrices, Czechoslovak Math. J 10 (85) (1960), 181–196 (English, with Russian summary). MR 0120243
  • [5] B. Sz.-Nagy, Sur la norme des fonctions de certains opérateurs, Acta Math. Acad. Sci. Hungar. 20 (1969), 331–334 (French). MR 0256200
  • [6] Vlastimil Pták, Norms and the spectral radius of matrices, Czechoslovak Math. J. 12 (87) (1962), 555–557 (English, with Russian summary). MR 0146190
  • [7] Yu. I. Ljubič and M. I. Tabačnikov, Ob odnoj teoreme Maříka-Ptáka, Sibirsk. Mat. Ž. 10 (1969), 470-473.
  • [8] -, Subgarmoničeskije funkcii na orientirovannom grafe, Sibirsk. Mat. Ž. 10 (1969), 600-613.
  • [9] Vlastimil Pták, Rayon spectral, norme des itérés d’un opérateur et exposant critique, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A257–A259 (French). MR 0220090
  • [10] Vlastimil Pták, Spectral radius, norms of iterates, and the critical exponent, Linear Algebra and Appl. 1 (1968), 245–260. MR 0230744
  • [11] Vlastimil Pták, Isometric parts of operators and the critical exponent, Časopis Pěst. Mat. 101 (1976), no. 4, 383–388 (English, with Loose Russian summary). MR 0458214
  • [12] Vlastimil Pták, A maximum problem for matrices, Linear Algebra Appl. 28 (1979), 193–204. MR 549433, 10.1016/0024-3795(79)90132-0
  • [13] Vlastimil Pták, An infinite companion matrix, Comment. Math. Univ. Carolin. 19 (1978), no. 3, 447–458. MR 508953
  • [14] N. J. Young, Analytic programmes in matrix algebras, Proc. London Math. Soc. (3) 36 (1978), no. 2, 226–242. MR 484965, 10.1112/plms/s3-36.2.226
  • [15] N. J. Young, Norms of matrix powers, Comment. Math. Univ. Carolin. 19 (1978), no. 3, 415–430. MR 508951

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A60, 30D50

Retrieve articles in all journals with MSC: 15A60, 30D50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0580999-0
Keywords: Inner functions, $ {H^\infty }$, spectral radius, norms of operators, convergence of iterative processes
Article copyright: © Copyright 1980 American Mathematical Society